Skip Nav Destination
Close Modal
Search Results for
film deposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 971
Search Results for film deposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 1 Concept of improved contrast between two phases from film deposition. The difference in reflectivity (Δ R ) between phases 1 and 2 is much greater with a film (Δ R n ) than without (Δ R 1 ).
More
Image
Published: 01 January 1986
Fig. 9 Positive SIMS spectra for an organometallic silicate film deposited on a silicon substrate. Obtained using a scanning ion microprobe under inert argon bombardment
More
Image
Published: 01 January 1994
Fig. 1 SEM micrograph of an electroless gold film deposit obtained using a cyanide-base system with potassium borohydride as the reducing agent. Deposit thickness, 1.5 μm. 5000×
More
Image
Published: 01 January 1994
Fig. 4 Arrhenius plots of growth rates of polycrystalline silicon films deposited on oxidized silicon wafers with and without plasma enhancement. LPCVD, low-pressure chemical deposition; PECVD, plasma-enhanced chemical vapor deposition. Source: Ref 41
More
Image
Published: 31 December 2017
Fig. 20 Friction coefficient for WS 2 film grown using atomic layer deposition in the as-deposited condition (a), and after annealing for 1 h at 500 °C, or 930 °F (b), compared with that for RF-sputtered WS 2 film (c). Source: Ref 83
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001286
EISBN: 978-1-62708-170-2
... Abstract This article describes eight stages of the atomistic film growth: vaporization of the material, transport of the material to the substrate, condensation and nucleation of the atoms, nuclei growth, interface formation, film growth, changes in structure during the deposition...
Abstract
This article describes eight stages of the atomistic film growth: vaporization of the material, transport of the material to the substrate, condensation and nucleation of the atoms, nuclei growth, interface formation, film growth, changes in structure during the deposition, and postdeposition changes. It also discusses the effects and causes of growth-related properties of films deposited by physical vapor deposition processes, including residual film stress, density, and adhesion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006360
EISBN: 978-1-62708-192-4
...-containing hydrogenated amorphous carbon films, deposition of tetrahedral amorphous carbon films, and deposition of silicon-incorporated hydrogenated amorphous carbon films. The most common deposition technologies for diamond films are also discussed. The article provides information on surface preparation...
Abstract
This article describes two variations of carbon-base coatings: diamondlike carbon (DLC) coatings and polycrystalline diamond (PCD) coatings. It discusses the basics of a few deposition methods as they apply to industrially relevant coatings. The methods include deposition of tungsten-containing hydrogenated amorphous carbon films, deposition of tetrahedral amorphous carbon films, and deposition of silicon-incorporated hydrogenated amorphous carbon films. The most common deposition technologies for diamond films are also discussed. The article provides information on surface preparation for DLC and diamond deposition. It also provides a discussion on the coating composition and structure, mechanical and tribological properties, and applications of DLC and diamond coatings. The quality control techniques for DLC and diamond coatings are specified to meet customer requirements and ensure repeatable quality.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003749
EISBN: 978-1-62708-177-1
... and describes several methods for film formation, namely, heat tinting, color etching, anodizing, potentiostatic etching, vapor deposition, and film deposition by sputtering. It provides information on the general procedures and precautions for etchants and reagents used in metallographic microetching...
Abstract
Metallographic contrasting methods include various electrochemical, optical, and physical etching techniques, which in turn are enhanced by the formation of a thin transparent film on the specimen surface. This article primarily discusses etching in conjunction with light microscopy and describes several methods for film formation, namely, heat tinting, color etching, anodizing, potentiostatic etching, vapor deposition, and film deposition by sputtering. It provides information on the general procedures and precautions for etchants and reagents used in metallographic microetching, macroetching, electropolishing, chemical polishing, and other similar operations.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001113
EISBN: 978-1-62708-162-7
... Abstract This article focuses on different thin-film deposition techniques used to make superconducting films and discusses the properties and advantages of high-critical-temperature and low-critical-temperature materials in a number of applications, including signal processing and analog...
Abstract
This article focuses on different thin-film deposition techniques used to make superconducting films and discusses the properties and advantages of high-critical-temperature and low-critical-temperature materials in a number of applications, including signal processing and analog electronic devices. The article gives a brief introduction on superconducting materials, substrates and buffer layers and discusses the major deposition techniques such as, electron-beam co-evaporation, sputtering from either a composite target or multiple sources and laser ablation. The article also describes the in-situ film growth techniques for producing atomic oxygen by radio frequency excitation or microwave discharge or with ozone.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001285
EISBN: 978-1-62708-170-2
... Abstract This article discusses the application of amorphous and crystalline films through plasma-enhanced chemical vapor deposition (PECVD) from the view point of microelectronic device fabrication. It describes the various types of PECVD reactors and deposition techniques. Plasma enhancement...
Abstract
This article discusses the application of amorphous and crystalline films through plasma-enhanced chemical vapor deposition (PECVD) from the view point of microelectronic device fabrication. It describes the various types of PECVD reactors and deposition techniques. Plasma enhancement of the CVD process is discussed briefly. The article also describes the properties of amorphous and crystalline films deposited by the PECVD process for integrated circuit fabrication.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001319
EISBN: 978-1-62708-170-2
... on contamination removal, plasma surface modification, plasma-induced grafting, and plasma film deposition. contamination removal plasma discharge reactions plasma film deposition plasma processing equipment plasma surface modification plasma-induced grafting plastic plasma treatment plastics surface...
Abstract
This article provides an overview of plasma surface treatments for plastics. It covers the equipment and methods used in plasma processing, providing detailed explanations of the plasma discharge reactions and how they affect surface state and topography. It also provides information on contamination removal, plasma surface modification, plasma-induced grafting, and plasma film deposition.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
... Abstract This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental...
Abstract
This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental and analytical approaches for experimental determination of texture: one using classical diffraction and pole figure measurement techniques and the other using individual orientation measurements. The article also provides information on microtexture, grain-boundary character, and texture gradients. It concludes with information on texture evolution through modeling.
Image
in Growth and Growth-Related Properties of Films Formed by Physical Vapor Deposition
> Surface Engineering
Published: 01 January 1994
Image
in Growth and Growth-Related Properties of Films Formed by Physical Vapor Deposition
> Surface Engineering
Published: 01 January 1994
Image
Published: 01 January 1994
Fig. 7 The Del / Psi trajectory when a film of tungsten is deposited onto silicon. The small dots are at 1 nm intervals. The large dots are at 5 nm intervals from zero thickness. Source: Ref 8
More
Image
Published: 01 December 2004
Fig. 17 Typical arrangement for vacuum deposition of interference films. The arrow indicates the tungsten wire basket filled with material for evaporation.
More
Image
Published: 01 December 2004
Fig. 21 Gas-discharge methods for deposition of interference films (a) and (b) and physical etching (c) and (d) by ion bombardment. (a) Reactive sputtering. (b) Cathodic discharge or sputtering. (c) Cathodic ion etching. (d) Ion etching. Source: adapted from Ref 1
More
Image
Published: 30 September 2015
Fig. 6 A hazy deposit on the surface of the paint film resembling the bloom on a grape, resulting in a loss of gloss and a dulling of color
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... Abstract This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing...
Abstract
This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing the properties of ion-plated films. The sources of potential applied on substrate surface, bombarding species, and depositing species are addressed. The article also provides information on the parameters that influence bombardment. It concludes with a discussion on the advantages, limitations, and applications of ion plating.
Image
Published: 31 December 2017
Fig. 35 Effect of Ni and Fe additions and substrate temperature on hardness of Al 2 O 3 thin films deposited using pulsed laser deposition. Source: Ref 163
More
1