Skip Nav Destination
Close Modal
Search Results for
filament-wound preforms
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48 Search Results for
filament-wound preforms
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... and carbonization cycle may be necessary to open voids for next impregnation Two-dimensional filament wound CVD infiltrated (also braided) CVD of pyrolytic carbon into filament wound fiber preform; more than one densification cycle may be required Carbon or graphite fiber filament wound shape with helical...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003416
EISBN: 978-1-62708-195-5
... ). Fig. 18 Commercial roller filament-winding. Courtesy of Applied Composites AB, Celsius Group Sporting Goods The effect on sporting goods of filament-wound composites has been immense. Virtually all tennis rackets are manufactured from composites. Many are made from a filament-wound preform...
Abstract
Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions. This article describes the advancements in filament winding and lists the advantages and disadvantages of filament winding. It discusses the effects of fiber tension in filament winding and the selection of fibers, resins, and materials for filament winding. The article emphasizes the three basic filament-winding patterns, such as helical, polar, and hoop. It presents information on the applications of filament winding, including rocket motors, natural gas vehicle (NGV) tanks, and sporting goods. The article presents recommendations for the basic design guidelines for filament-winding design/manufacturing process and concludes with a discussion on fabrication recommendations.
Image
Published: 01 January 1990
preform is then drawn in successive stages to form the multifilament wire. The niobium-tin filaments are then formed in the wire by diffusing the tin into the niobium. This is accomplished by heating it to hundreds of degrees Celcius for ≧200 h. Because the resulting filaments are brittle
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003040
EISBN: 978-1-62708-200-6
... as high a fiber volume fraction as filament winding, braids can assume more complex shapes (sharper curvatures) than filament-wound preforms. The interlaced nature of braids also provides a higher level of structural integrity, which is essential for ease of handling, joining, and damage resistance. While...
Abstract
Braiding is a textile process that is known for its simplicity and versatility. Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the braiding process and the mechanical properties of two-dimensional and three-dimensional braiding.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002492
EISBN: 978-1-62708-194-8
... the fibers have been coated with resin and stored at low temperature, can also be used for filament winding. Examples of filament-wound products are tubes and storage tanks. Fig. 2 Schematic representations of winding techniques High-Pressure Laminates High-pressure laminates are made...
Abstract
The goal of design is to improve the overall performance of the metal or ceramic matrix rather than to create a material with different response than the base matrix. This article focuses on the design for manufacturing polymeric composites. Specially developed methods including contact molding, compression-type molding, resin-injection molding, and pultrusion are described. The article also discusses the various factors to be considered in designing for composite manufacturing.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003360
EISBN: 978-1-62708-195-5
... Abstract This article describes the types of fabrics and preforms used in the manufacture of advanced composites and related selection, design, manufacturing, and performance considerations. The types of fabrics and preforms include unidirectional and two-directional fabrics; multidirectionally...
Abstract
This article describes the types of fabrics and preforms used in the manufacture of advanced composites and related selection, design, manufacturing, and performance considerations. The types of fabrics and preforms include unidirectional and two-directional fabrics; multidirectionally reinforced fabrics; hybrid fabrics; woven fabric prepregs; unidirectional and multidirectional tape prepregs; and the prepreg tow. The article discusses three major categories of tape manufacturing processes, namely, the hand lay-up, machine-cut patterns that are laid up by hand, and the automatic machine lay-up. It provides a description of the two classes of prepregs. These include those that are suitable for high-performance applications and suitable for lower-performance molding compounds.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003361
EISBN: 978-1-62708-195-5
... curvatures) than filament-wound preforms. The interlaced nature of braids also provides a higher level of structural integrity, which is essential for ease of handling, joining, and damage resistance. While it is easier to provide hoop (90°) reinforcement by filament winding, longitudinal (0°) reinforcement...
Abstract
Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the classifications of braiding such as two-dimensional braiding and three-dimensional braiding. It presents the governing equations for computer-controlled braiding in a table. The article lists the applications of braided fabrics and composites. It discusses the formation, structure, and properties of two-dimensional braid composites and three-dimensional braid composites: the damage tolerance and the impact damage limitation.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003421
EISBN: 978-1-62708-195-5
.... The impregnated fiber tow or preform sheets are similar to the prepregs used in fabrication of polymer-matrix composites (PMCs) ( Ref 2 ). The impregnated tow or prepreg is wound on a drum and dried. This is followed by cutting and stacking of the prepregs and consolidation by hot pressing. The process has...
Abstract
Ceramic-matrix composites (CMCs) have ability to withstand high temperatures and have superior damage tolerance over monolithic ceramics. This article describes important processing techniques for CMCs: cold pressing, sintering, hot pressing, reaction-bonding, directed oxidation, in situ chemical reaction techniques, sol-gel techniques, pyrolysis, polymer infiltration, self-propagating high-temperature synthesis, and electrophoretic deposition. The advantages and disadvantages of each technique are highlighted to provide a comprehensive understanding of the achievements and challenges that remain in this area.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... developed. In the case of carbon fibers, the need for woven fabrics to form complex shapes brought a request for smaller tows. The resulting 1000-, 3000-, and 6000-filament tows are now used to produce woven goods. In another example, resin systems reinforced with glass, carbon, or boron fibers were...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003395
EISBN: 978-1-62708-195-5
... selected, the design must still address the microstructure of the component. The type of reinforcement—continuous fiber, short fiber, whiskers, chopped roving, woven or braided fabrics, and preforms—and its orientation greatly affect the performance of the component. Indeed, the ability to tailor...
Abstract
Designing composites for structural performance initially involves meeting a set of desired performance specifications at a minimum cost. This article discusses the factors that are considered in designing the manufacturing of polymeric composites. It describes the various aspects of manufacturing, forming process, and post-processing and fabrication for designing the composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003350
EISBN: 978-1-62708-195-5
... and fatigue damage, and OMCs provided an approach to overcome these issues. By the end of the war, glass-fiber- reinforced plastics had been used successfully in filament-wound rocket motors and demonstrated in various other prototype structural aircraft applications. These materials were put into broader use...
Abstract
This article begins with a brief history of composite materials and discusses its characteristics. It presents an introduction to the constituents, product forms, and fabrication processes of composite materials. The article concludes with a discussion on the applications of organic-matrix, metal-matrix, and ceramic-matrix composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003476
EISBN: 978-1-62708-195-5
... filament-wound duct Fig. 19 F110 carbon-PMR filament-wound duct Fig. 20 F110 carbon-PMR hand lay-up fabric duct In 1996, the DMLCC,E program also explored solvent-assisted resin transfer molding (SaRTM) of braided preforms as a low-cost manufacturing method for carbon-PMR...
Abstract
High-temperature-resistant polymers are used in aerospace, electronic, and other applications that demand outstanding elevated-temperature physical and mechanical properties. This article discusses the general characteristics of condensation-type polyimides and polymerization of monomer reactants (PMR) polyimides. It provides information on the applications of PMR-15 with illustrations.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... additions. Reinforced intermetallic compounds, such as the aluminides of titanium, nickel, and iron, are also under development. Reinforcements, characterized as either continuous or discontinuous, may constitute from 10 to 70 vol% of the composite. Continuous fiber or filament (f) reinforcements include...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002491
EISBN: 978-1-62708-194-8
... 3.0 30 y y y y n y n n y y Filament winding n/a n/a n/a n/a … … n/a y n y y y n n (a) y Pultrusion n/a n/a n/a n/a n/a n/a n/a y n n/a n y n n y y Note: y, yes; n, no; n/a, not applicable. (a) One side of filament-wound article will exhibit...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts. The methods include injection molding, extrusion, thermoforming, blow molding, rotational molding, compression molding/transfer molding, composites processing, and casting. The article describes principal features incorporated into the design of plastic parts. It concludes with a discussion on the materials selection methodology for plastics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... a need for materials with improved structural properties. In response, fiber-reinforced composites were developed, and by the end of the war fiberglass-reinforced plastics had been used successfully in filament-wound rocket motors and in various other structural applications. These materials were put...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
.... In this process, niobium, which has been formed into an expanded metal sheet, is interleaved with a sheet of copper and wound around a central mandrel made of tin. This initial preform is then drawn in successive stages to form the multifilament wire. The niobium-tin filaments are then formed in the wire...
Abstract
This article reviews the phase diagrams, alloy with third element additions, layer growth, critical current density, and matrix materials of A15 superconductors. It describes the production methods of tape conductors (chloride deposition, and surface diffusion) and multifilamentary wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle, superconductor. Finally, it discusses the applications of A15 superconductors in commercial magnets, power generation, power transmission, high-energy physics, and fusion.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003353
EISBN: 978-1-62708-195-5
... are rapidly drawn to a fine diameter and solidify. Typical fiber diameters range from 3 to 20 μm (118 to 787 μin.). Individual filaments are combined into multifilament strands, which are pulled by mechanical winders at velocities of up to 61 m/ s (200 ft/s) and wound onto tubes or forming packages...
Abstract
This article discusses the types, oxide composition, as well as mechanical and physical properties of general-purpose and special-purpose glass fibers. It describes the glass melting and fiber forming processes and provides information on important commercial products such as continuous roving, woven roving, fiberglass mat, chopped strand, and textile yarns.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... and 7 , respectively, or by some modification of these constructions. The techniques used to manufacture these preforms include weaving dry yarns ( Ref 51 ), piercing fabrics ( Ref 52 , 53 ), assembling resin-rigidized yarns ( Ref 54 ), and filament winding (modified) ( Ref 55 ). Block Preforms...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... constructions shown in Fig. 1 and 2 , respectively, or by some modification of these constructions. The techniques used to manufacture these preforms include weaving dry yarns ( Ref 8 ), piercing fabrics ( Ref 9 , 10 ), assembling resin- rigidized yarns ( Ref 11 ), and filament winding (modified) ( Ref 12...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009077
EISBN: 978-1-62708-177-1
.... In many cases, the lay-up is simple, and only the number of prepreg plies or reinforcement type is required to be determined. Usually, the number of plies is quite easy to determine, but composites having high fiber volumes or parts that are filament wound can be a challenge, and the composite may need...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
1