Skip Nav Destination
Close Modal
Search Results for
field metallography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 309 Search Results for
field metallography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003751
EISBN: 978-1-62708-177-1
... Abstract This article discusses the advantages and disadvantages of field metallography and describes the important material characteristics and other aspects to be considered before performing any metallographic procedure. It investigates the various stages of sample preparation...
Abstract
This article discusses the advantages and disadvantages of field metallography and describes the important material characteristics and other aspects to be considered before performing any metallographic procedure. It investigates the various stages of sample preparation in the metallographic laboratory: grinding, polishing, etching, preparing a replica, and obtaining a small sample. The article also illustrates the applications of field metallography with case studies.
Image
Published: 01 December 2004
Fig. 1 Examples of field metallography. (a) Metallographer using field techniques to examine the microstructure of a hot strip work roll that spalled. Metallographer is in the mill roll shop where rolls are reconditioned. (b) Field metallography being conducted in a power plant
More
Image
Published: 01 December 2004
Fig. 32 Field metallography of a nickel aluminide austenitizing furnace roll. (a) and (b) Gold-enhanced replicas representing the microstructure of a nickel aluminide austenitizing furnace roll. The dendritic microstructure consists of primary dendrite arm of nickel aluminide with small
More
Image
Published: 01 December 2004
Image
Published: 01 December 2004
Fig. 6 Rubber stubs used to hold grinding papers and polishing cloths for field metallography. Three different mesh size grinding papers are on stubs on the right and a polishing cloth on the stub on the left
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... Abstract This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003720
EISBN: 978-1-62708-177-1
... metallography, where specimens are replicas taken in situ from components in the field. There are two types of replicas: surface replicas and extraction replicas. Surface replicas provide an image of the surface topography of a specimen, while extraction replicas lift particles from the specimen...
Abstract
This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle, and fatigue fracture with illustrations. It discusses microanalysis with a focus on the method of light microscopy and includes information of scanning electron microscope in fractography. The article also explains the characteristics of solidification, transformation, deformation structures, and discontinuities that are present in a microstructure. It concludes with information on image analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... for examination of a polished specimen and after etching, and is the most commonly used examination mode in metallography. Polarized light is widely used to examine the structure of as-polished metals with a noncubic crystal structure. However, it is still useful to examine the as-polished surface in bright field...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003248
EISBN: 978-1-62708-199-3
... gained wide usage in quality control and research studies. Examples of the applications of quantitative metallography have been reviewed by Underwood ( Ref 1 ). Basically, two types of measurements of microstructures are made. The first group includes measurements of depths (i.e., depth...
Abstract
Quantifying microstructural parameters has received considerable attention and success in developing procedures and using such data to develop structure/property relationships has been achieved. This article reviews many of the simple stereological counting measurements of volume fraction, grain structure (two-phase grain structures, and nonequiaxed grain structures), grain size, and inclusion content. It also reviews simple relationships between number of grains per unit area, number of intersections of a line of known length with particle or grain, and number of interceptions of particles or grains by a line of known length.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003754
EISBN: 978-1-62708-177-1
... Abstract This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article...
Abstract
This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope, to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
... photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006682
EISBN: 978-1-62708-213-6
... fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content. quantitative metallography quantitative microstructural measurement grain size Overview Introduction Many tasks performed by metallographers are done simply by visual...
Abstract
This article reviews many commonly used stereological counting measurements and the relationships based on these parameters. The discussion covers the processes involved in sampling and specimen preparation. Quantitative microstructural measurements are described including volume fraction, number per unit area, intersections and intercepts per unit length, grain size, and inclusion content.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
... in smearing or alteration of the microstructure. Microstructural analysis has been used extensively for characterizing ferrous and nonferrous metals, but it is also extremely useful for characterizing advanced materials such as composites and ceramics. Traditional quantitative metallography or stereology...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003782
EISBN: 978-1-62708-177-1
... some examples of the microstructure and examination for zircaloy alloys, hafnium, zirconium, and bimetallic forms. chemical processing applications etching grinding hafnium hafnium alloys metallography microstructure mounting nuclear applications polishing sectioning specimen...
Abstract
Zirconium, hafnium, and their alloys are reactive metals used in a variety of nuclear and chemical processing applications. This article describes various specimen preparation procedures for these materials, including sectioning, mounting, grinding, polishing, and etching. It reviews some examples of the microstructure and examination for zircaloy alloys, hafnium, zirconium, and bimetallic forms.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003527
EISBN: 978-1-62708-180-1
... or sectioning for scanning electron microscopy examination and/or metallography. It is important to photograph the component at each stage of the process to retain the visual information available and the component condition at each step. Field Photographic Documentation Composition Photographic...
Abstract
This article reviews photographic principles, namely, visual examination, field photographic documentation, and laboratory photographic documentation, as applied to failure analysis and the specific techniques employed in both the field and laboratory. It provides information on the photographic equipment used in failure analysis and on film and digital photography. The article describes the basics of photography and the uses of different types of lighting in photography of a fractured surface. The article also addresses the techniques involved in macrophotography and microscopic photography as well as other special techniques.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... of light microscopy are covered in the article “Light Optical Metallography” in this Volume. While light microscopy is an important metallurgical tool, it has a number of limitations: Spatial resolution: Conventional light microscopes cannot resolve features smaller than ∼1 μm. Depth of field...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
..., and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy. electrolytic polishing failure analysis field metallography fracture...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001755
EISBN: 978-1-62708-178-8
... analyzers metallography microscopy microstructure quantitative determination sample preparation Overview Introduction Image analysis minimizes the influence of operator fatigue, which reduces the accuracy and reproducibility of manual measurements. In addition, although microstructural...
Abstract
This article describes the various steps involved in image analysis, including sample selection and preparation, image preprocessing, measurement, and data analysis and output. It reviews various types of image analyzers and explains how operator bias and poor sample selection and preparation practices can lead to measurement error. It also examines several applications, illustrating how microstructural measurements can be used to assess quality control and better understand how processing changes affect microstructure and, in turn, material properties and behavior.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003803
EISBN: 978-1-62708-177-1
... Abstract Archaeometallurgists use metallography to reveal and interpret the microstructures of objects, in conjunction with the results of their chemical analyses and microanalyses. This article describes a number of special problems that occur while performing metallographic analyses...
Abstract
Archaeometallurgists use metallography to reveal and interpret the microstructures of objects, in conjunction with the results of their chemical analyses and microanalyses. This article describes a number of special problems that occur while performing metallographic analyses on archaeological materials. It also presents case studies, with examples that illustrate situations where metallography has contributed to archaeometallurgical studies.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003752
EISBN: 978-1-62708-177-1
... etching color etchants color metallography differential interference contrast illumination film formation molybdate films optical methods polarized light sulfide films thermal methods tint etching vapor deposition THE USE OF COLOR in metallography has a long history, with color micrographs...
Abstract
This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color.