Skip Nav Destination
Close Modal
Search Results for
fiber-matrix adhesion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350
Search Results for fiber-matrix adhesion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003374
EISBN: 978-1-62708-195-5
... Abstract Fiber-matrix adhesion is a variable to be optimized in order to get the best properties and performance in composite materials. This article schematically illustrates fiber matrix interphase for composite materials. It discusses thermodynamics of interphase in terms of surface energy...
Abstract
Fiber-matrix adhesion is a variable to be optimized in order to get the best properties and performance in composite materials. This article schematically illustrates fiber matrix interphase for composite materials. It discusses thermodynamics of interphase in terms of surface energy, contact angle, work of adhesion, solid surface energy, and wetting and wicking. The article describes the change in interphase depending on the reinforcing fiber such as glass fiber, polymeric fiber, and carbon fiber. It emphasizes fiber-matrix adhesion measurements by direct methods, indirect methods, and composite laminate tests. The effects of interphase and fiber-matrix adhesion on composite mechanical properties, such as composite on-axis properties, composite off-axis properties, and composite fracture properties, are also discussed.
Image
Published: 01 January 2001
Fig. 4 The adhesion of the A-4 carbon fibers to the epoxy matrix, as quantified through single-fiber fragmentation tests. The fiber-matrix adhesion increases in the order AU-4 > AS-4 > AS-4C. AU-4 has the lowest level of adhesion and fails by a frictional debonding mode; AS- 4 has
More
Image
Published: 01 January 2002
and polished tip with excessive fiber-matrix debonding aggravating wear of composite. (d) Multiple parallel microcracks perpendicular to the sliding direction indicating fatigue with cavities due to fiber consumption, deterioration in fiber matrix adhesion, and wear thinning of longitudinal fiber. (e) Deep
More
Image
Published: 01 January 2001
is more sensitive than the tensile strength to fiber-matrix adhesion. The fiber-matrix adhesion decreases in the order AS-4C > AS-4 > AU-4. AU-4 and AS- 4 exhibit interfacial failure modes; AS-4C fails in a matrix- dominated mode. Source: Ref 45
More
Image
Published: 01 January 2002
in fiber matrix adhesion, fiber pulverization, pullout, and peeling off followed by removal; 8, inhibition to matrix cracking; and 9, layer of back-transferred film or wear debris. Source: Ref 2
More
Image
Published: 01 January 2001
Fig. 5 Fracture surface of A-4/epoxy [±45] 3S composites, illustrating the different nature of the failure mode and interphase properties. The fiber-matrix adhesion decreases in the order AS-4C > AS-4 > AU-4. AU-4 and AS-4 exhibit interfacial failure modes; AS-4C fails in a matrix
More
Image
Published: 01 January 2001
strengths all show the same trends. The fiber-matrix adhesion decreases in the order AS-4C > AS-4 > AU-4. AU-4 and AS-4 exhibit interfacial failure modes; AS-4C fails in a matrix-dominated mode. Source: Ref 45
More
Image
Published: 01 January 2001
Fig. 8 Comparison between the mode I and mode II fracture toughness of the three composite materials. The mode II fracture toughness is about three times higher than the mode I fracture toughness. The fiber-matrix adhesion decreases in the order AS-4C > AS-4 > AU-4. AU-4 and AS-4 exhibit
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... in the composite significantly affects the microcracking, as does the concentration of the toughener ( Ref 4 ). Along with the matrix constituents, the fiber properties and fiber-matrix adhesion levels also influence the microcracking susceptibility of the cured composite ( Ref 3 , 5 ). In addition...
Abstract
This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003460
EISBN: 978-1-62708-195-5
..., and orientation; fiber, matrix, and void-volume fractions; fiber/matrix adhesion; material crystallinity; and material defects such as porosity, delaminations, and microcracking. The article also details several different techniques used for sample preparation of different materials, including information...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Failure Analysis” in ASM Handbook, Volume 21: Composites. Most of the information in this Section is geared toward organic-matrix composites, although there is some information on failure analysis and fractography of ceramic- and metal-matrix composites.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... depends on the type of fiber and matrix, volume fraction, distribution, aspect ratio, alignment, and adhesion to the matrix. As per Eq 7 , the higher the aspect ratio ( l / r , where l and r are the length and radius of fiber, respectively), the greater is the contact load transferred from the matrix...
Abstract
This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed for each of these types.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... that there is extensive interlayer delamination between almost every layer. ( Figure 3b to e ) is a series of micrographs taken with higher magnification from areas in Fig. 3(a) . It can be seen that there is extensive fiber fracture ( Fig. 3b ) and mostly adhesive failure at the fiber-matrix interface, as shown...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
... the surface chemistry of reclaimed AS4 carbon fibers and compared it to virgin AS4. No significant differences in surface chemistry were noted. This is important if the fibers are to be reused in composites applications, where fiber/matrix adhesion is critical. Kennerley and coworkers ( Ref 24...
Abstract
This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery, and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006947
EISBN: 978-1-62708-387-4
..., the majority of the glass fibers are fractured in the same plane as the matrix, exposing many fiber cross sections. The relatively few instances of fiber pullout indicate good fiber/matrix adhesion, because it took less energy to fracture the fiber than to pull the fiber out of the matrix. Fig. 22 SEM...
Abstract
This article provides an overview of polymer fractography, with examples of various fracture surfaces created under diverse loading conditions. The focus is on the interpretation of polymer fracture-surface features in light of the unique viscoelastic nature of polymers. The article presents fractographic examples of three time-dependent cracking mechanisms: fatigue fracture, creep rupture, and environmental stress cracking. It details characteristic fractographic features that can be observed in optical microscopy (OM) and scanning electron microscopy (SEM).
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... in the short glass fibers (SGFs) content. The holes produced on the surface are the result of SGFs pulling out due to poor adhesion between SGFs and the PES matrix ( Ref 27 ). In general, SFRP composites show better resistance to abrasive wear compared with long, continuous fiber-reinforced composites...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006367
EISBN: 978-1-62708-192-4
.... Their high strength-to-weight ratio and rigidity make carbon-fiber composites ideal materials to be applied in a variety of industries, such as aerospace, automotive, and civil engineering, sports goods, and so on. Carbon fiber (CF), having an inert surface, does not allow the matrix material to bond...
Abstract
This article discusses the importance of friction and wear and the role of lubricants in composites. It highlights the progress and developments in using different forms of carbon allotropes in composites for improved friction and wear performance of materials. The article focuses on the widely used form known as carbon black (CB) and shows how to deal with friction and wear of polymers and composites when gamma irradiation is involved. It also discusses the role of graphite in composite materials, which is widely used as a dry lubricant. The article examines the tribology of carbon nanotubes (CNTs) as components in composite materials. It also highlights some of the most pronounced examples of graphene use as a reinforcement agent for improving tribological performance in composite matrices. The article concludes with a discussion on the progress of research in diamond-containing composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003463
EISBN: 978-1-62708-195-5
... Abstract Mechanical and environmental loadings cause a variety of failure modes in composites, including matrix cracking, fiber-matrix debonding, delamination between plies, and fiber breakage. This article summarizes visual analysis and nondestructive testing methods for the failure analysis...
Abstract
Mechanical and environmental loadings cause a variety of failure modes in composites, including matrix cracking, fiber-matrix debonding, delamination between plies, and fiber breakage. This article summarizes visual analysis and nondestructive testing methods for the failure analysis of composites. These methods include radiography, ultrasonic techniques, acoustic emission, and thermograph. The article also provides information on destructive test techniques.
Image
Published: 01 December 2004
to occur extensively at the fiber (tow)-matrix interface and is mostly adhesive failure. Epi-fluorescence, 390–440 nm excitation, 25× objective. (d) Cracks shown at the fiber (two)-matrix interface. Epi-fluorescence, 390–440 nm excitation, 25× objective. (e) Cracks spanning the resin-rich areas. Epi
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003462
EISBN: 978-1-62708-195-5
..., and manufacturing records Visual analysis, documentation of damage and any other nondestructive part evaluation Verification of materials, including the fiber/ resin/adhesive systems Determination of fiber, matrix, and void volume fractions and verification of the lay-up, ply type, and orientation...
Abstract
This article describes the failure analysis procedures for composites and the techniques to be used in these analyses. These procedures include a review of the available in-service records, materials and processing methods, print requirements, and manufacturing records; visual analysis and nondestructive part evaluation; and verification of materials and processing methods. The article discusses the determination of fiber, matrix, and void volume fractions and verification of ply lay-up and orientation. A review of composites processing parameters; fractography and surface analysis; and mechanical testing and stress analysis is also presented.
1