Skip Nav Destination
Close Modal
Search Results for
ferrography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
ferrography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006383
EISBN: 978-1-62708-192-4
... particles and the mechanisms by which they are generated. The article concludes with a summary of the major applications of wear particle analysis. chemical composition conductivity density ferrography hardness lubricant analysis magnetic susceptibility polarity spectrometric oil analysis...
Abstract
This article focuses on different aspects of wear particle analysis. It discusses the different wear regimes in the wear rate versus time (bathtub) curve. The article explains the essence of condition monitoring and how to properly sample lubricants for condition monitoring. It also discusses in-service lubricant analysis for condition monitoring, focusing on the spectrometric oil analysis program. The article describes the characteristics of wear particles and analytical techniques for characterizing them. It also describes the characteristics of different types of wear particles and the mechanisms by which they are generated. The article concludes with a summary of the major applications of wear particle analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
.... , and Montoro L. , Applying Analytical Ferrography as a Technique to Detect Failures in Diesel Engine Fuel Injection Systems , Wear , Vol 260 , 2006 , p 562 – 566 10.1016/j.wear.2005.03.019 5. Muzakkir S.M. , Hirani H. , Thakre G.D. , and Tyagi M.R. , Tribological Failure...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
..., placing hardness impressions in surfaces, and measuring the change in their sizes after wear. Lubricant filtration or ferrography (see the article “Lubricant Analysis” in Friction, Lubrication, and Wear Technology , Volume 18, ASM Handbook ) is also a method to measure wear, as is surface layer...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.