Skip Nav Destination
Close Modal
Search Results for
ferritic stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 828 Search Results for
ferritic stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 35 Cracking of a welded ferritic stainless steel heat exchanger ( example 15 ). (a) Diagram showing the heat-exchanger weld joint design. (b) The transverse crack that occurred through the weld. 5.9×. (c) Metallographic profile of the weld near the cracking, showing melt-through, grain
More
Image
Published: 01 January 2002
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200×
More
Image
Published: 01 January 2005
Fig. 20 σ(ε) curves for a commercial ferritic stainless steel at various temperatures; experimental measurements compared with curves evaluated from Eq 55
More
Image
Published: 15 December 2019
Fig. 13 Grain structure of Monit, a ferritic stainless steel at 400× magnification (the magnification bar is 25 μm). There are 15 grains completely inside the 102 × 114 mm (4 × 4.5 in.) rectangle and 24 grains that intersect the rectangle, ignoring the four grains at the corners (coded C1
More
Image
Published: 01 January 2006
Fig. 20 σ(ε) curves for a commercial ferritic stainless steel at various temperatures; experimental measurements compared with curves evaluated from Eq 55
More
Image
Published: 01 January 1993
Fig. 5 Grain boundary martensite formation in a type 430 ferritic stainless steel gas-tungsten arc weld. (a) Fusion zone. 100×. (b) Heat-affected zone. 150×. Source: Ref 47 , 48
More
Image
Published: 31 December 2017
Fig. 6 Linear wear rate of AISI 430 (UNS 43000) ferritic stainless steel sliding against alumina in 0.5 M H 2 SO 4 and 0.5 M NaOH at different passive potentials. Source: Ref 33
More
Image
Published: 30 September 2015
Fig. 11 Compactibility (green strength) of ferritic stainless steel 434-L powder in the annealed and unannealed condition
More
Image
Published: 01 January 2003
Fig. 39 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200×
More
Image
Published: 01 January 2003
Image
Published: 01 December 2004
Fig. 5 Solenoid-quality type 430FR ferritic stainless steel. Note that some of the ferrite grain boundaries were not revealed. Ralph's reagent (etchant 19, Table 1 ). Original magnification 100×
More
Image
in Metallography and Microstructures of Stainless Steels and Maraging Steels[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 2 Damage produced when 26Cr-1Mo ferritic stainless steel was cut with a band saw. Acetic glyceregia etch
More
Image
in Metallography and Microstructures of Stainless Steels and Maraging Steels[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 8 Microstructure of annealed 26Cr-1Mo E-Brite ferritic stainless steel, revealed using (a) acetic glyceregia and (b) aqueous 60% HNO 3 at 1.2 V dc for 120 s
More
Image
Published: 15 January 2021
Fig. 38 Cracking of a welded ferritic stainless steel heat exchanger (Example 22). (a) Diagram showing the heat-exchanger weld joint design. GTAW, gas tungsten arc weld. (b) Transverse crack that occurred through the weld. Original magnification: 5.9×. (c) Metallographic profile of the weld
More
Image
Published: 01 February 2024
Fig. 43 A 409 ferritic stainless steel sheet revealed using Vilella’s reagent. Courtesy of George F. Vander Voort, Vander Voort Consulting
More
Image
Published: 15 January 2021
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. Original magnification: 200×
More
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005989
EISBN: 978-1-62708-168-9
... Abstract Ferritic stainless steels are essentially chromium containing steel alloys with at least 10.5% Cr. They can be grouped based on their chromium content: low chromium (10.5 to 12.0%), medium chromium (16 to 19%), and high chromium (greater than 25%). This article provides general...
Abstract
Ferritic stainless steels are essentially chromium containing steel alloys with at least 10.5% Cr. They can be grouped based on their chromium content: low chromium (10.5 to 12.0%), medium chromium (16 to 19%), and high chromium (greater than 25%). This article provides general information on the metallurgy of ferritic stainless steels. It describes two types of heat treatments to avoid sensitization and embrittlement. They are annealing and stress relieving. The article also provides information on casting and stabilization of ferritic stainless steels to avoid precipitation of grain boundary carbides.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001409
EISBN: 978-1-62708-173-3
... Abstract This article describes the classification of ferritic stainless steels. It reviews the metallurgical characteristics of various ferritic grades as well as the factors that influence their weldability. The article provides a discussion on various arc welding processes. These processes...
Abstract
This article describes the classification of ferritic stainless steels. It reviews the metallurgical characteristics of various ferritic grades as well as the factors that influence their weldability. The article provides a discussion on various arc welding processes. These processes include gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), flux-cored arc welding (FCAW), shielded metal arc welding (SMAW), and plasma arc welding (PAW). The selection criteria for welding consumables are discussed. The article also explains the welding procedures associated with the ferritic stainless steels. It concludes with information on weld properties.
Image
Published: 01 January 1990
Image
Published: 01 January 1996
Fig. 6 Fatigue crack growth rates of ferritic stainless steels under various conditions. Source: Ref 5 and K. Makhlouf and J.W. Jones, Int. Journal of Fatigue , Vol 15, 1993, p 163–171
More
1