Skip Nav Destination
Close Modal
Search Results for
ferrite-martensite microstructure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 628
Search Results for ferrite-martensite microstructure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 7 Ferrite-martensite microstructure of a dual-phase steel (0.06% C, 1.5% Mn; water quenched from 760 °C, or 1400 °F). Source: Ref 49
More
Image
Published: 01 January 1990
Fig. 1 Ferrite-martensite microstructure of a dual-phase steel (0.06% C, 1.5% Mn; water quenched from 760 °C, or 1400 °F). Source: Ref 1
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001026
EISBN: 978-1-62708-161-0
... Abstract Dual-phase steels are a new class of high-strength low alloy (HSLA) steels characterized by a microstructure consisting of about 20% hard martensite particles dispersed in a soft ductile ferrite matrix. In addition to high tensile strength, in the range of 550 MPa (80 ksi), dual-phase...
Abstract
Dual-phase steels are a new class of high-strength low alloy (HSLA) steels characterized by a microstructure consisting of about 20% hard martensite particles dispersed in a soft ductile ferrite matrix. In addition to high tensile strength, in the range of 550 MPa (80 ksi), dual-phase steels exhibit continuous yielding behavior, a low 0.2% offset yield strength, and a higher total elongation than other HSLA steels of similar strength. The article discusses some of the more pertinent aspects of dual-phase steels, such as heat treatment, microstructure, mechanical properties, chemical composition, and manufacturability. In general, these steels have a carbon content of less than 0.1%, which ensures that they can be spot welded. However, newer high-carbon dual-phase steels in development are generating interest due to their unique combination of total elongation and tensile strength.
Image
in Metallography and Microstructures of Stainless Steels and Maraging Steels[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 55 Martensitic microstructure, with δ-ferrite, in as-cast 410 stainless steel (441 HV). Etched with Vilella's reagent
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
... and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite...
Abstract
This article describes microstructures and microstructure-property relationships in steels. It emphasizes the correlation of microstructure and properties as a function of carbon content and processing in low-alloy steels. The article discusses the iron-carbon phase diagram and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite-pearlite microstructures. It shows the range of hardness levels which may be obtained by tempering at various temperatures as a function of the carbon content of the steel. To reduce the number of processing steps associated with producing quenched and tempered microstructures, new alloying approaches have been developed to produce high-strength microstructures directly during cooling after forging.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003090
EISBN: 978-1-62708-199-3
... and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. For a particular iron and steel composition, most properties depend on microstructure. Processing is a means to develop and control microstructure, for example, hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure. It lists the mechanical properties of selected steels in various heat-treated or cold-worked conditions. In steels and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully pearlitic microstructure; the machine housing has a ferrite plus pearlite matrix with graphite flakes; and the jaw crusher microstructure contains martensite and cementite.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
.... The white matrix phase is ferrite, the small outlined white particles are retained austenite, and the small dark patches are auto-tempered martensite (and a minor amount of retained austenite). A large nitride particle is also shown at the bottom of the field. Fig. 20 Microstructure of heat treated...
Abstract
This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common and complex mixtures of constituents (single or combination of two phases) that are encountered in iron-base alloys and the complex structure that is observed in these microstructures. The single-phase constituents discussed in the article include austenite, ferrite, delta ferrite, cementite, various alloy carbides, graphite, martensite, and a variety of intermetallic phases, nitrides, and nonmetallic inclusions. The article further describes the two-phase constituents including, tempered martensite, pearlite, and bainite and nonmetallic inclusions in steel that consist of two or more phases.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002461
EISBN: 978-1-62708-194-8
... of these factors in both theoretical and practical terms, with particular focus on the role of microstructure in various irons. These include bainite, pearlite, ferfite, martensite, austenite, ferrite-pearlite, ferrite-cementite, ferrite-martensite, graphite, and cementite. The article discusses the evolution...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. Processing is a means to develop and control microstructure by hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure in various irons. These include bainite, pearlite, ferfite, martensite, austenite, ferrite-pearlite, ferrite-cementite, ferrite-martensite, graphite, and cementite. The article discusses the evolution of microstructural change in rail steels, cast iron, and steel sheet. It contains tables that list the mechanical properties and compositions of selected steels. The article also discusses the basis of material selection of irons and steels.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
... and can exhibit variations of the main constituents: ferrite, cementite, pearlite, bainite, and martensite. Some of the low-alloy steels may contain retained austenite. These microstructural constituents are subsequently described in brief. There are a number of references available that provide detailed...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001407
EISBN: 978-1-62708-173-3
... by microstructure and are described as ferritic, martensitic, austenitic, or duplex. The article illustrates compositional ranges of the ferritic, martensitic, austenitic, and duplex alloys in the Schaeffler diagram. It describes the metallurgical aspects of welded stainless steels to be considered for particular...
Abstract
Stainless steels are an important class of engineering alloys used in both wrought and cast form for a wide range of applications and in many environments. This article aids in the selection of stainless steels based on weldability and service integrity. Stainless steels are classified by microstructure and are described as ferritic, martensitic, austenitic, or duplex. The article illustrates compositional ranges of the ferritic, martensitic, austenitic, and duplex alloys in the Schaeffler diagram. It describes the metallurgical aspects of welded stainless steels to be considered for particular engineering applications and service conditions. The article discusses the microstructural evolution of the weld metal and the heat-affected zone, susceptibility to defect formation during welding, mechanical and corrosion properties, and weld process tolerance.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
... and low-alloyed irons containing ferrite, pearlite, the phosphorus eutectic (steadite), cementite, martensite, and bainite can be etched successfully with nital at room temperature to reveal all of these microstructural constituents. Usually, this is a 2 to 4% alcohol solution of nitric acid (HNO 3...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005819
EISBN: 978-1-62708-165-8
... ferrite heat treatment iron-carbon phase diagram isothermal transformation martensite pearlite residual stress steel thermal stress Introduction Heat treatment is roughly defined as controlled heating and cooling of a solid material, so as to change the microstructure and obtain specific...
Abstract
The heat treatment of steel is based on the physical metallurgical principles that relate to its processing, properties, and structure. The microstructures that result from the heat treatment of steel are composed of one or more phases in which the atoms of iron, carbon, and other elements in steel are associated. This article describes the phases of heat treated steel, and provides information on effect of temperature change and the size of carbon atoms relative to that of iron atoms during the heat treatment.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005859
EISBN: 978-1-62708-167-2
... for 1042 steel with three starting microstructures: large-grained ferrite with coarse pearlite (identified as the annealed steel); finer-grained ferrite with finer pearlite (identified as the normalized steel); and a quenched and tempered martensitic steel ( Ref 4 ). In these microstructures, the primary...
Abstract
This article focuses on induction hardening process for heat treating operations specifically designed to result in proper microstructure/property combinations in either localized or in the final parts. It briefly reviews the heat treating basics for conventional heat treating operations of steels with iron-carbon phase and transformation diagrams. The article provides a summary of the important temperatures, definitions, and microstructural constituents associated with heat-treated steels. Basic transformation characteristics of heat-treated steels are reviewed. The article also discusses the various aspects of steel heat treatment by induction processing, and concludes with a description of steel alloys for induction processing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
... of malleable irons with emphasis on its composition and heat treatment. The article provides information on the specifications and mechanical properties of different types of malleable irons, such as ferritic, pearlitic, and martensitic malleable irons. chemical composition ferritic malleable iron...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules. This article tabulates the typical composition of malleable iron and specifications, and applications of malleable iron castings. It discusses the metallurgical control of malleable irons with emphasis on its composition and heat treatment. The article provides information on the specifications and mechanical properties of different types of malleable irons, such as ferritic, pearlitic, and martensitic malleable irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
... microstructure. Picral is safer to be stored in the lab than nital, which can be an explosive mixture under certain conditions when it is stored in a tightly closed bottle. Fig. 17 Austempered ductile iron (Fe-3.6%C-2.5%Si-0.056%P-0.052%Mg-0.7%Cu). Martensite and acicular ferrite. The casting...
Abstract
The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes the general preparation of metallographic specimens and the methods of macroscopic and microscopic examination. Usually, gray-scale (black-and-white) metallography is sufficient for microstructural analysis of cast irons. The article discusses the use of color metallography of gray irons and ductile irons. It also presents application examples of color metallography.
Image
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 18 Artifact microstructures in (a), (b), and (c) that developed by heating the specimen during sectioning on an abrasive cutoff wheel. (a) Tempered martensite (gray) in a ferrite matrix (white). (b) Tempered martensite (gray) and pearlite (dark) in a ferrite matrix (white). (c) Pearlite
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex. electropolishing procedures etching techniques grinding devices macroscopic examination maraging steels metallography maraging steel microstructures microscopic...
Abstract
This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex.
Image
Published: 01 January 1993
Fig. 15 International Institute of Welding scheme for classifying microstructural constituents in ferritic steel weld metals with the optical microscope. Source: Ref 23 Category Abbreviation Primary ferrite PF Grain boundary ferrite PF(G) Intragranular polygonal
More
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006995
EISBN: 978-1-62708-450-5
... than martensite and stronger than pearlite. Bainite is tougher than martensite and pearlite. It is a microstructure consisting of ferrite and cementite that can take different forms, unlike pearlite in which cementite and ferrite form lamellar arrays. Figure 15 shows upper and lower bainite...
Abstract
Steels are among the most versatile materials in modifying their microstructure and properties by heat treatment. This article outlines the basic concepts of physical metallurgy relating to the heat treatment of steel. It considers the phases and microstructures of steel together with the transformations observed and critical temperatures during heat treatment. Additionally, the different types of steels, heat treatments, and their purposes are also discussed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006067
EISBN: 978-1-62708-175-7
... Abstract Stainless steels are primarily alloys of iron and chromium. They are grouped into five families, primarily based on their microstructure: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Three out of the five families of stainless steels, namely, austenitic...
Abstract
Stainless steels are primarily alloys of iron and chromium. They are grouped into five families, primarily based on their microstructure: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Three out of the five families of stainless steels, namely, austenitic, ferritic, and martensitic, are well suited for manufacture via conventional powder metallurgy (PM) processes. This article presents the iron-chromium partial phase diagram to illustrate the changes in the temperature range when pure iron is alloyed with chromium. It describes AISI and UNS numbering systems, which are used as an identification system for stainless steels. The article tabulates the material designations of stainless steels in accordance with the Metal Powder Industries Federation. It also details the characteristics and chemical composition of wrought and PM stainless steels.
1