Skip Nav Destination
Close Modal
By
Leo Kestens, John J. Jonas
By
Arlan O. Benscoter, Bruce L. Bramfitt
By
George F. Vander Voort, Gabriel M. Lucas, Elena P. Manilova
By
George Krauss
By
Ingvar L. Svensson, Jakob Olofsson
By
Tito Andriollo, Nikolaj Vedel-Smith, Jesper Thorborg, Jesper Hattel
By
Chester J. Van Tyne, John Walters
Search Results for
ferrite deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 689
Search Results for ferrite deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Homogeneous dislocation tangle in δ-ferrite deformed to fracture in tension...
Available to PurchasePublished: 01 January 1986
Fig. 65 Homogeneous dislocation tangle in δ-ferrite deformed to fracture in tension at 4 K. Thin foil TEM specimen
More
Image
Dislocation dipoles and loops in ferrite deformed 0.5% in tension at 4 K. T...
Available to PurchasePublished: 01 January 1986
Fig. 68 Dislocation dipoles and loops in ferrite deformed 0.5% in tension at 4 K. Thin foil TEM specimen
More
Book Chapter
Transformation and Recrystallization Textures Associated with Steel Processing
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004029
EISBN: 978-1-62708-185-6
... Abstract The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides...
Abstract
The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides an introduction on crystallographic textures. It discusses the effects of austenite rolling and recrystallization on the texture and transformation behavior of recrystallized austenite and deformed austenite. The article illustrates the overall summary of the rolling and transformation behavior. It details cold-rolling textures, annealing textures, and recrystallization textures of steel samples. The article concludes with a summary of texture development during cold rolling and annealing.
Image
Severely deformed graphite nodules in machined chips from ferritic spheroid...
Available to PurchasePublished: 31 August 2017
Fig. 4 Severely deformed graphite nodules in machined chips from ferritic spheroidal graphite iron. Reprinted with permission from the American Foundry Society. Source: Ref 4
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
... ) found that, in the forging of steels, ferrite grains were coarser when the deformation temperature was high and when the reductions were relatively small. This discovery became industrially important when it was realized that impact toughness was a critical material property in the application of steel...
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
Book Chapter
Ductile Irons: Atlas of Fractographs
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000603
EISBN: 978-1-62708-181-8
... the considerable deformation of the unrestrained ferrite. Fracture occurs here by ductile tearing and microvoid coalescence. SEM, 385×. Fig. 56 : River patterns indicative of brittle failure on fracture surface of a pearlitic ductile iron. SEM, 385× (F.J. Worzala, University of Wisconsin) Fig. 53 Fig...
Abstract
This article is an atlas of fractographs that covers pearlitic and ferritic ductile irons. The fractographs display the following: brittle cleavage fracture; fatigue crack propagation; fatigue and monotonic fracture surfaces; fracture modes in slow monotonic loading and impact loading; and microcrack initiation and propagation.
Book Chapter
Metallography and Microstructures of Low-Carbon and Coated Steels
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003761
EISBN: 978-1-62708-177-1
...) on the grain boundaries. An experienced metallographer will prepare a specimen properly to avoid artifacts in the microstructure. Fig. 1 Microstructure of a UNS G10100 steel sheet showing the effect of deformation during shearing of the specimen. (a) The proper microstructure of equiaxed ferrite grains...
Abstract
This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated steels, such as sectioning, mounting, grinding, polishing, and etching, are discussed. The article also reviews the simple and proven manual sample preparation techniques of coated steel specimens.
Book Chapter
Malleable Irons/White Irons: Atlas of Fractographs
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000604
EISBN: 978-1-62708-181-8
... deformation and microcrack initiation and propagation ahead of the primary crack in a ferritic malleable iron (ASTM A47, grade 32510). Heat treatment was standard (graphitizing anneal, furnace cool). Hardness: 140 HB. Samples were polished, etched in 4% nital, and then strained. Figures 98 , 99 , 100...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pearlitic malleable and ferritic malleable white irons, and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture sequence, localized plastic deformation, and microcrack initiation and propagation of these irons.
Book Chapter
Metallography and Microstructures of Stainless Steels and Maraging Steels
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult...
Abstract
This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex.
Book Chapter
Microstructures, Processing, and Properties of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
... and 80 ksi). The key to the use of controlled rolling is the formation of fine austenite grains that transform upon cooling to very fine ferrite grains. Deformation of austenite induces strains, which, at high temperatures, are rapidly eliminated by recrystallization, followed by grain growth...
Abstract
This article describes microstructures and microstructure-property relationships in steels. It emphasizes the correlation of microstructure and properties as a function of carbon content and processing in low-alloy steels. The article discusses the iron-carbon phase diagram and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite-pearlite microstructures. It shows the range of hardness levels which may be obtained by tempering at various temperatures as a function of the carbon content of the steel. To reduce the number of processing steps associated with producing quenched and tempered microstructures, new alloying approaches have been developed to produce high-strength microstructures directly during cooling after forging.
Book Chapter
Bulk Formability of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... in productivity), and a considerable range of finishing temperatures can be achieved. This operation can accommodate the most severe controlled-rolling schedules, including the deformation of austenite-ferrite mixtures. In metallurgical terms, the controlled-rolling operation in microalloyed steels serves two...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Book Chapter
Computer-Aided Prediction of Mechanical Properties
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
... of elastic and plastic deformation of cast iron ( Ref 17 – 19 ), and the result is described subsequently. The example that is shown is for ductile iron. The mechanical properties of the ductile iron casting are affected mainly by the volume fraction of ferrite, pearlite, and graphite. The static properties...
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.
Image
Microstructure of an ASTM A36 structural steel showing ferrite + pearlite. ...
Available to Purchase
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 28 Microstructure of an ASTM A36 structural steel showing ferrite + pearlite. Note the remnants of scratches in the softer ferrite phase. These subsurface deformation zones from grinding (as shown in Fig. 26 ) were not removed in the polish. 2% nital etch. 100×
More
Image
Delayed fracture curves for tensile tests on welded joints in 35Kh3N3M (a R...
Available to PurchasePublished: 01 January 1993
Fig. 28 Delayed fracture curves for tensile tests on welded joints in 35Kh3N3M (a Russian specification) steel. A, ferritic-pearlitic weld; B, bainitic-martensitic weld; C, austenitic weld; D, ferritic-pearlitic weld plus deformation at 500 to 300 °C (930 to 570 °F). The schematic shows
More
Book Chapter
Internal Casting Stresses and Dimensional Stability
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
... will erase the existing stresses in the casting as the iron matrix transforms from a face-centered cubic austenitic lattice to a body-centered cubic ferritic lattice ( Ref 8 ). However, the deformations created earlier in the process will remain. Although the eutectoid phase transformation will erase...
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Book Chapter
Warm and Hot Working Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... deformation is conducted in the austenite phase field and cold deformation is done in the ferrite phase field. Chemistry Steels are typically composed of 95 to 99% Fe with 0.005 to 1.0% C. The carbon imparts strength and hardenability to the alloy. Other elements that are typically added to steel...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Image
Austenite dislocation sources (arrows) in an austenite/ferrite interface du...
Available to PurchasePublished: 01 January 1986
Fig. 64 Austenite dislocation sources (arrows) in an austenite/ferrite interface during cryogenic tensile deformation. Thin foil TEM specimen
More
Image
Flow curves for Armco iron deformed under hot working conditions in the fer...
Available to Purchase
in Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 15 Flow curves for Armco iron deformed under hot working conditions in the ferrite phase field. Source: Ref 24
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... chips is formed, depending on the metal matrix and cutting parameters. Fig. 4 Severely deformed graphite nodules in machined chips from ferritic spheroidal graphite iron. Reprinted with permission from the American Foundry Society. Source: Ref 4 The chip-formation process while machining...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Image
Crack in a high-strength ductile iron (grade 100-70-03) impeller showing de...
Available to PurchasePublished: 01 January 2002
Fig. 8 Crack in a high-strength ductile iron (grade 100-70-03) impeller showing deformation in the ferrite resulting in blunting of this secondary crack. 2% nital etch. 492×
More
1