Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Search Results for
feedstock density
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 166 Search Results for
feedstock density
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006141
EISBN: 978-1-62708-175-7
... will be made from. Various considerations come into play and include (but are not limited to) the question of availability of suitable powders, experience of the company in converting the powder into the desired feedstock, and then processing the material to near full density. Assuming all the considerations...
Abstract
This article describes part selection, feedstock (powders and binders) characteristics and properties, tool design, and material and tooling for fabrication of metal powder injection molding (MIM) machines. It discusses the process parameters, operation sequence, molding machines, debinding techniques, consolidation (sintering) techniques, advantages, and limitations of MIM.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005503
EISBN: 978-1-62708-197-9
... + η γ ˙ 2 where ρ is the molten PIM feedstock density, C p is the molten PIM feedstock specific heat, and: γ ˙ = ( ∂ / ∂ z ) 2 + ( ∂ v / ∂ z ) 2 is the generalized shear rate, and k is the thermal conductivity of the feedstock...
Abstract
This article focuses on the axisymmetric 2.5-dimensional approach used in metal powder injection molding (PIM) simulations. It describes three stages of PIM simulations: filling, packing, and cooling. The article discusses the process features of numerical simulation of PIM, such as filling and packing analysis, cooling analysis, and coupled analysis between filling, packing, and cooling stages. It explains the experimental material properties and verification for filling, packing, and cooling stages in the PIM simulations. The article presents simulation results from some of the 2.5-dimensional examples to demonstrate the usefulness of the computer-aided engineering analysis and optimization capability of the PIM process.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006555
EISBN: 978-1-62708-290-7
.... Fig. 9 Schematic of material jetting A second embodiment involves melting a polymer and atomizing it to create a fine particle stream for jetting. Feedstocks include polypropylene (PP), high-density polyethylene, polystyrene (conventional and high impact), poly(methyl methacrylate...
Abstract
Additive manufacturing is a collection of manufacturing processes, each of which builds a part additively based on a digital solid model. The solid model-to-additive manufacturing interface and material deposition are entirely computer-controlled. The traditional additive manufacturing applications have been used for low production runs of parts with complex shapes and geometric features. Additive manufacturing is also used for topology optimization and it impacts the process and supply chain. This article discusses processes, including vat photopolymerization, material jetting, powder bed fusion, directed energy deposition, material extrusion, binder jetting, and sheet lamination.
Image
Published: 01 December 2008
Fig. 2 Examples of electron beam melting and casting processes. (a) Button melting with controlled solidification for quantitative determination of low-density inclusions. (b) Consolidation of raw material, chips, and solid scrap to consumable electrodes for vacuum arc or electron beam
More
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
... is the ability to nest parts in a single build easily, which increases part-packing density; parts also build faster without supports. Polymer PBF feedstock is generally certain types of semicrystalline polymers, with the most popular being polyamide (nylon), with or without composite additions such as flame...
Abstract
Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and manufacturing issues, and safety, postprocessing, and finishing considerations, as well as of principal defects in PBF polymer parts and the mechanical properties of the parts produced by PBF. The article provides case studies on the applications of polymer PBF.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005713
EISBN: 978-1-62708-171-9
.... It provides information on feedstock materials developed for specific thermal spray processes. powder production thermal barrier coatings thermal spray coating THE EARLIEST RECORDS of thermal spray originate in the patents of M.U. Schoop (Zurich, Switzerland), dating from 1882 to 1889...
Abstract
Significant expansion of thermal spray technology occurred with the invention of plasma spray, detonation gun, and high-velocity oxyfuel (HVOF) deposition technologies. This article provides a brief history of the major initiating inventions/developments of thermal spray processes. It provides information on feedstock materials developed for specific thermal spray processes.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006571
EISBN: 978-1-62708-290-7
... apply to BJAM. For example, the quality of the green part, and consequently the densified part, is strongly influenced by powder feedstock flowability. Powder with low flowability usually results in lower green part density with more irregular porosity, which translates into a higher likelihood...
Abstract
The highly irregular morphologies of ceramic powder particles due to their process history present a challenge to binder jetting additive manufacturing (BJ-AM) ceramic powder feedstock processability, but knowledge of powder metallurgy of ceramics benefits the development and analysis of the BJ-AM ceramic processes. Understanding BJ-AM process principles and ceramics processing challenges requires reviewing a number of fundamental principles, which this article delineates. The discussion covers the processability considerations, a brief summary of some fundamental aspects of modeling of liquid permeation in the powder bed, and process capabilities and advantages of BJ-AM technology.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003013
EISBN: 978-1-62708-200-6
... (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication...
Abstract
This article discusses postconsumer plastics recyclate quantities, the classification of plastics recycling into primary, secondary, tertiary, and quaternary categories, and how the life cycle of plastics is affected by recycling. The recycling processes of polyethylene terephthalate (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication, product service, and disposal. Landfilling is still the primary method of final disposal, and incineration is another option, but recycling has become a viable alternative. The article presents a comparison between secondary and tertiary recycling.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
... scanning can lead to low-density parts, while multiple scanning attempts can introduce geometrical irregularities. The second approach is commonly used for high-melting-temperature materials, such as metals and ceramics; this method is usually referred to as indirect SLS (iSLS), and the feedstock...
Abstract
Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used in producing tissue engineering parts from HA feedstocks. This article provides a brief overview of the process itself, along with a detailed review of HA-based tissue engineering applications using SLS. Discussion on the various polymer composites is presented. A detailed overview of selected publications on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
... photopolymerization process ( Ref 59 ). Less than 100% relative density is likely due to defects such as pores caused by the inhomogeneity of feedstock and inaccuracy of material dispensing inherent in AM processes ( Ref 123 ). Another reason could be their lower green density compared with that for conventional...
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006021
EISBN: 978-1-62708-175-7
... Abstract This article discusses the process details of metal powder injection molding of microcomponents and the powder particle characteristics of feedstock and property requirements of binders. It reviews important characteristics to be considered in the processing steps: venting, channel...
Abstract
This article discusses the process details of metal powder injection molding of microcomponents and the powder particle characteristics of feedstock and property requirements of binders. It reviews important characteristics to be considered in the processing steps: venting, channel diameters, binder segregation, binder degradation, feedstock supply, temperature control, demolding, debinding, and sintering. Finally, the article provides information on powder injection molding mold-filling simulation and two-component powder injection molding, offering a method for high-volume production of microcomponents made of multifunctional materials.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... ingots low energy consumption; economical melting Limited refining; expensive feedstock preparation; only round ingots Economical feedstock preparation; refining of high-density inclusions; melting of slabs, ingots, and rods; high production rate; low energy consumption Alloying limited; material...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006583
EISBN: 978-1-62708-290-7
... poor surface finish + - - - Very early development The powder-based methods require the use of powders that are free flowable with high packing density. Most powders used are spherical. The feedstock-based methods, on the other hand, can work with nonspherical powders. From the powder...
Abstract
Tungsten, molybdenum, and cemented carbide parts can be produced using several additive manufacturing technologies. This article classifies the most relevant technologies into two groups based on the raw materials used: powder-bed methods, such as selective laser melting, electron beam melting, and binder jet three-dimensional (3-D) printing, and feedstock methods, such as fused-filament fabrication and thermoplastic 3-D printing. It discusses the characteristics, processing steps, properties, advantages, limitations, and applications of these technologies.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... There are two main classes of EB deposition processes currently in use for near-net shape fabrication of three-dimensional (3-D) parts. These classes are based on the type of feedstock used and how it is delivered to the molten pool. One class uses a wire-feed-based feedstock method, and the other uses a powder...
Abstract
This article focuses on the use of electron beam (EB) for near-net shape processing based on the wire feed material-delivery method. EB deposition processes start with a 3-D model designed in a computer-aided design (CAD) environment, where the deposition path and process parameters are generated. The article provides a description of the electron beam direct manufacturing (EBDM) system used for manufacturing of target parts with the aid of a case study. The control of the essential variables of dynamic beam deflection is also reviewed. The article also includes information on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
... the macroscopic examination of defects, which occur in semisolid metalworking with illustrations. It discusses the macroscopic examination of gating systems and semisolid feedstocks. The article also provides information on feedstock microstructures, direct semisolid metalworking component microstructures...
Abstract
This article begins with a description of indirect and direct semisolid metalworking processes. It then provides information on alloy compositions of common aluminum semisolid metalworking alloys and primary die-cast magnesium alloys in a tabular form. The article describes the macroscopic examination of defects, which occur in semisolid metalworking with illustrations. It discusses the macroscopic examination of gating systems and semisolid feedstocks. The article also provides information on feedstock microstructures, direct semisolid metalworking component microstructures, and indirect semisolid metalworking component microstructures of series 300 aluminum casting alloys and magnesium die-casting alloys.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006549
EISBN: 978-1-62708-290-7
.... H dep , deposit height; H layer , layer height; D sub , penetration depth into substrate; W dep , deposit width Parameters that define energy density together with mass feed rate ( M ) of the feedstock (in grams per second) directly influence the amount and geometry of the material...
Abstract
This article presents a detailed account of directed-energy deposition (DED) processes that are used for additive manufacturing (AM) of metallic materials. It begins with a process overview and a description of the components of DED systems followed by sections providing information on the process involved in DED and the materials used for DED. The postprocessing applied to the material after deposition is then covered. The article discusses the properties of metallic materials produced by using DED and ends with a discussion on applications for DED processes in various industries.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
... correlate well with coating density. It is therefore essential that the TS applicator appreciate that feedstock materials are not designated solely by their chemistry and particle size. It is critical to indicate that substitution of one powder for another (because of cost, availability, etc.) does...
Abstract
This article discusses three types of powder-feeder systems that are commonly used throughout the thermal spray (TS) industry: gravity-based devices, rotating wheel devices, and fluidized-bed systems. It provides information on the various mechanical methods for producing powders, namely, crushing, milling, attriting, and machining. The article describes two prime methods of agglomeration. One method uses a binder by way of agglutination, while the other relies on a sintering operation. The article discusses the technology and principles of the processes that relate to thermal spraying, and offers an understanding for choosing particular feedstock materials that are classified based on the thermal spray process, material morphology, chemical nature of the material, and applications. Sieving, the most common method of separating powders into their size fractions, is also reviewed. The article also provides information on the topical areas and precautions to be undertaken to protect the operator from safety hazards.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006053
EISBN: 978-1-62708-175-7
... to oxygen, vacuum should be applied when sigma mixing for long times. Sintering shrinkage is determined by the green density of the mixed feedstock, not the pressure applied in the molding operation. Therefore, an accurate measurement of the green density is required. This is best achieved using helium...
Abstract
Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion, green machining, and injection molding.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
.... These defects are generally avoided by using high-quality, well-characterized feedstocks and energy densities achieved by establishing processing windows for a particular machine and material combination that produces the desired performance results. Anomalous Microstructural Zones Most AM processes...
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006055
EISBN: 978-1-62708-175-7
... for tooling orthodontic dental components can be much higher than for larger parts, because creating extremely small details requires sophisticated machining and a great deal of skill. Many MIM manufacturers use a hot runner system, which helps prevent MIM feedstock from cooling too quickly and freezing...
Abstract
Metal injection molding (MIM) is a metalworking technology that has its origins as a commercial technology only dating back to the early 1970s. This article explores why the MIM is the preferred solution for many fabricated components. It illustrates the MIM components required for different end-use markets such as electronics and telecommunications, medical, automotive, power hand tools, industries, and firearms.
1