1-15 of 15 Search Results for

fault hazard analysis

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... Abstract This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... disruption or process fault, or through routine nondestructive examinations. Sometimes it may not be possible to complete all of the steps discussed here, due to the specific circumstances of the failure. Many of the SCC failures that are investigated occur in industrial facilities where the initial...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
...-thickness) direction of 180 MPa (26 ksi) and 288 MPa (42 ksi), respectively. Cracking occurred during service by fatigue running along banded regions containing many manganese sulfide inclusions, when the material was loaded transversely in service. In this case, the fault was not with the material, which...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
.... Effects that are directional in a structure can be resolved with SCND because each sample direction is measured independently. This allows the measurement of effects arising from stacking faults, defects, and anisotropic diffusion that are not easily disentangled in radially averaging methods where these...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.9781627081948
EISBN: 978-1-62708-194-8
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.9781627081757
EISBN: 978-1-62708-175-7
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... mechanisms of precipitation hardening have in common the method in which dislocations are impeded through the particle and matrix and the description of that motion. Six primary mechanisms of precipitation hardening have been described in the literature: chemical strengthening, stacking-fault strengthening...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
...) commercial atomistic simulation software, for example, Materials Studio ( Ref 18 ), have powerful graphical utilities for displaying surface structures of perfect crystals from crystallographic data; however, real surfaces are more complex than ideal ones because of crystallographic defects (stacking faults...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
... a low stacking-fault energy. The resistance to corrosion of the Co-Cr-W alloys and newer cobalt alloys stems from the effects of chromium, which enhances passivity in aqueous media and encourages the formation of protective oxide films at high temperatures. The aqueous corrosion resistance of...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... of the explosion hazard at temperatures below 760 °C (1400 °F). Typical precipitation cycles are given in Table 9 for cast alloys. The usual operating-temperature tolerance is ±14 °C (25 °F) for wrought alloys and ±8 °C (15 °F) for casting alloys. Continuous furnaces are seldom used, because of...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
... need should be determined by the cost and liability associated with the product. A more detailed description of designing, testing, and analyzing adhesives can be found in the Sections “Testing and Analysis” and “Designing with Adhesives and Sealants” in Adhesives and Sealants, Volume 3 of the...