Skip Nav Destination
Close Modal
Search Results for
fault hazard analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 79 Search Results for
fault hazard analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002439
EISBN: 978-1-62708-194-8
... hazard analysis in terms of failure modes and effects analysis, failure modes and criticality analysis, fault tree analysis, fault hazard analysis, and operating hazards analysis. The article examines fail-safe designs, such as fail-passive designs, fail-active designs, and fail-operational designs...
Abstract
Any threat to personal safety should be regarded as a hazard and treated as such. This article discusses threats from several sources, such as kinematic/mechanical hazards, electrical hazards, energy hazards, human factors/ergonomic hazards, and environmental hazards. It describes hazard analysis in terms of failure modes and effects analysis, failure modes and criticality analysis, fault tree analysis, fault hazard analysis, and operating hazards analysis. The article examines fail-safe designs, such as fail-passive designs, fail-active designs, and fail-operational designs. It also provides information on various types of warnings, such as visual warning, auditory warnings, olfactory warnings, tactile warnings, and tastable warnings.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002436
EISBN: 978-1-62708-194-8
... and technical methods of risk/hazard analysis practiced in the industry to identify possible hazards and the resources necessary to avoid or reduce risks. These methods include the failure mode and effect analysis, fault tree analysis, event tree analysis, risk/benefit analysis, safety analysis...
Abstract
Risk and hazard analysis can be effectively used during design reviews to provide valuable feedback to the design to avoid failures. This article discusses the types of risks, namely, real risk, statistical risk, predicted risk, and perceived risk. It describes the principle and technical methods of risk/hazard analysis practiced in the industry to identify possible hazards and the resources necessary to avoid or reduce risks. These methods include the failure mode and effect analysis, fault tree analysis, event tree analysis, risk/benefit analysis, safety analysis, and probabilistic estimates.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005752
EISBN: 978-1-62708-194-8
... for CSA Canadian Standards Association FHA fault hazard analysis Standardization eSt centiStokes Fig. figure ITS International Temperature Scale CTE coefficient of thermal expansion FLD forming limit diagram IV intrinsic viscosity J joule CTOD crack tip opening displacement FM figure of merit JIS Japanese...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... appearance transition tempera- ture fcc face-centered cubic FCAW flux cored arc welding FDA Food and Drug Administration FEA finite element analysis FFS fit for service FHA fault hazard analysis Fig. figure FMEA failure modes and effects analysis FMECA failure modes, effects, and criticality analysis FRP...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002440
EISBN: 978-1-62708-194-8
..., effects, and criticality analysis (FMECA); fault tree analysis (FTA); fault hazard analysis (FHA); operating hazard analysis (OHA); use of codes, standards and various regulatory acts, and the Occupational Safety and Health Act (OSHA). These are discussed in the article “Safety in Design” in this Volume...
Abstract
Products liability is a legal term for the action whereby an injured party (plaintiff) seeks to recover damages for personal injury or property loss from a producer and/or seller when the plaintiff alleges that a defective product caused the injury or loss. This article provides information on the legal bases for products liability and definitions for two types of defects: manufacturing defects and design defects. It summarizes other possible defects in design as well as preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003505
EISBN: 978-1-62708-180-1
... modes, effects, and criticality analysis (FMECA); fault-tree analysis (FTA); fault hazard analysis (FHA); operating hazard analysis (OHA); use of codes, standards, and various regulatory acts; and the Occupational Safety and Health Act (OSHA). These are discussed in the article “Safety in Design...
Abstract
This article discusses the three legal theories on which a products liability lawsuit is based and the issues of hazard, risk, and danger in the context of liability. It describes manufacturing and design defects of various products. The article explains a design that is analyzed from the human factors viewpoint and details the preventive measures of the defects, with examples. It presents four paramount questions relating to the probability of injury which are asked even when one executes all possible preventive measures carefully and thoroughly.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how...
Abstract
This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how fault trees are used to unify the analysis of failure modes caused by design errors, manufacturing and maintenance processes, materials, and so on, and to assess the probability of failure mode occurrence. It concludes with information on some of the approaches to automating the FMEA.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... include failure mode and effects analysis, failure mode, effect, and criticality analysis, fault tree analysis, and fault hazard analysis. These formalized methodologies use systematic evaluation and sophisticated computer programs to predict failure in complicated designs and can be an invaluable aid...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth...
Abstract
This article describes design factors for products used in engineering applications. The article groups these factors into three categories: functional requirements, analysis of total life cycle, and other major factors. These categories intersect and overlap, constituting a major challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth and product manufacture, use, recycling (including design for recycling), and disposal. The other major factors considered include evaluation of the current state of the art for a given design, designing to codes and standards, and human factors/ergonomics.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... be catastrophic. These methods include failure mode and effects analysis, failure mode effect and criticality analysis, fault tree analysis, and fault hazard analysis. These formalized methodologies use systematic evaluation and sophisticated computer programs to predict failure in complicated designs and can...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006544
EISBN: 978-1-62708-290-7
..., as well as recommendations and strategies that can be employed to both prevent and protect against damaging effects from powder exposure, fire and/or explosions, or environmental impact events. dust hazards analysis metal powder handling metal powder hazards safety METAL POWDERS can...
Abstract
During metal powder production, powder and/or dust handling, compaction, and part finishing operations, many safety and environmental risks exist. This article is a detailed account of the types of safety hazards that can exist and the issues that occur during metal powder handling, as well as recommendations and strategies that can be employed to both prevent and protect against damaging effects from powder exposure, fire and/or explosions, or environmental impact events.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004110
EISBN: 978-1-62708-184-9
... of a pipeline. ECDA includes primarily nonintrusive or above ground examinations, which are tailored to the pipeline or segment to be evaluated. In addition, physical examinations (direct assessments) of the pipeline at sites identified as potential areas of concern by analysis of the indirect examinations...
Abstract
External corrosion direct assessment (ECDA) is a structured process intended for use by pipeline operators to assess and manage the impact of external corrosion on the integrity of underground pipelines. This article focuses on four steps of ECDA, namely, preassessment, indirect examinations, direct examination, and post assessment. The ECDA tool selection matrix used to determine the tool choices is also presented.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005759
EISBN: 978-1-62708-171-9
... that this cannot be a complete list, because the hazards are as many as there are variations in booth configuration. Completing a design review and a risk analysis is recommended to help identify hazards and thus ensure the appropriate steps are taken to reduce those hazards. In many cases, local codes and/or laws...
Abstract
This article discusses the safety issues associated with the design and operation of thermal spray booths and spray box structures and the equipment or systems required for operating thermal spray processes. It describes the design elements necessary to mitigate sound, dust and fume, ultraviolet light, and mechanical hazards. The means selected for safeguarding personnel must be based on a formal risk assessment that meets ANSI/RIA standards. The safeguards include sensing devices, barriers, awareness signals, procedures, and training. It also provides guidelines that are intended to increase the safety awareness and the use of safety practices for gas and liquid piping and electrical equipment within thermal spray installations.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
...-life design, fail-safe design, redundant design, and hazard analysis ( Ref 4 , 5 ) must be considered as integral parts of the product development, and not simply as “add-ons” at the end of the project. Safety considerations and hazard analysis in design are discussed further in the articles “Safety...
Abstract
This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment design, and detail design, is reviewed. The article discusses the design process at the personal and project levels but takes into consideration the effects of some higher level influences and interfaces often found to contribute to engineering failures.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006183
EISBN: 978-1-62708-175-7
... at.% atomic percent FEM nite-element modeling atm atmosphere (pressure) Fig. gure b Burgers vector FM gure of merit bal balance FMEA failure modes and effects analysis bcc body-centered cubic ft foot bct body-centered tetragonal FTA fault tree analysis Btu British thermal unit g gram C Coulomb; heat...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.9781627081948
EISBN: 978-1-62708-194-8
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... Abstract This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... Abstract This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003642
EISBN: 978-1-62708-182-5
... concentrations of silicate ions, illustrates how the model reproduces the competitive behavior between the local cathodic and anodic processes that are taken into account in the analysis. The dominant cathodic process, the reduction of oxygen, in this example, proceeds under mass- transfer control, as shown...
Abstract
Corrosion modeling is an essential benchmarking element for the selection and life prediction associated with the introduction of new materials or processes. These models are most naturally expressed in terms of differential equations or in other nonexplicit forms of mathematics. This article discusses the principles and applications of various models developed for understanding the corrosion mechanism. These models include mechanistic models, including Pourbaix model, thermophysical module, electrochemical module, and ion association model; risk-based models; and knowledge models. The risk-based model and knowledge models are illustrated with examples for better understanding. The article also describes boundary-element modeling and pitting corrosion fatigue models.
1