Skip Nav Destination
Close Modal
Search Results for
fatigue testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2005 Search Results for
fatigue testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003318
EISBN: 978-1-62708-176-4
... Abstract This article provides a review of fatigue test methodologies and an overview of general fatigue behavior, fatigue crack initiation and fatigue crack propagation of advanced engineering plastics. It also describes the factors affecting fatigue performance of polymers and concludes...
Abstract
This article provides a review of fatigue test methodologies and an overview of general fatigue behavior, fatigue crack initiation and fatigue crack propagation of advanced engineering plastics. It also describes the factors affecting fatigue performance of polymers and concludes with information on fractography, a useful tool in failure analysis.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003319
EISBN: 978-1-62708-176-4
... Abstract This article describes the fatigue mechanism and behavior of environmentally induced fatigue and cyclic fatigue. It discusses three basic strength test methods, namely, static, dynamic, and cyclic, along with their analytical relations for determining the fatigue parameters...
Abstract
This article describes the fatigue mechanism and behavior of environmentally induced fatigue and cyclic fatigue. It discusses three basic strength test methods, namely, static, dynamic, and cyclic, along with their analytical relations for determining the fatigue parameters and behavior of ceramics and glasses. The article explains the double torsion and double-cantilever beam fracture mechanics methods, which employ test specimens with relatively large, induced cracks. Crack growth data are typically determined directly by the observation of the crack or by devices that monitor test specimen compliance, such as clip gages and strain gages.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003320
EISBN: 978-1-62708-176-4
.... It provides an account of the various biaxial and multiaxial fatigue testing methods, specimen geometries, and stress intensity factors important in the study multiaxial fatigue. Widely used test methods are the torsion-rotating bending fatigue test and biaxial and triaxial fatigue tests. Common specimen...
Abstract
The main objective for the study of combined-stress fatigue is to obtain fatigue data for axles and to find the criterion for fatigue limit under combined stress. This article begins with a description of the stress states of combined stress and stress fields near crack tips. It provides an account of the various biaxial and multiaxial fatigue testing methods, specimen geometries, and stress intensity factors important in the study multiaxial fatigue. Widely used test methods are the torsion-rotating bending fatigue test and biaxial and triaxial fatigue tests. Common specimen geometries include rectangular plate specimens, cruciform specimens, compact tension shear specimens, compact shear specimens, mode II crack growth specimen, circumferentially notched cylindrical specimens, tubular specimens containing a slit, and solid cylindrical specimens containing a small hole or initial crack.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003315
EISBN: 978-1-62708-176-4
... Abstract This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect...
Abstract
This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect to strain-rate-dependent material behavior. The article also provides information on the applications of the ultrasonic fatigue test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies, are reviewed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the corrosion fatigue testing of steel in high-temperature water and discusses critical experimental issues associated with it. It provides information on the fundamental aspects of environmental crack advancement in general. The article explains the concepts...
Abstract
This article focuses on the corrosion fatigue testing of steel in high-temperature water and discusses critical experimental issues associated with it. It provides information on the fundamental aspects of environmental crack advancement in general. The article explains the concepts and role of environmentally assisted crack growth in corrosion fatigue. It also discusses the fatigue test methods, including crack initiation testing and crack propagation testing. The article describes the specific types and influence rankings of experimental variables in corrosion fatigue.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... Abstract This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial...
Abstract
This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial fatigue testing machines and bending fatigue machines. Load cells, grips and alignment devices, extensometry and strain measuring devices, environmental chambers, graphic recorders, furnaces, and heating systems of ancillary equipment are discussed. The article presents technologies available to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue interaction, and thermomechanical fatigue. The effects of various variables on fatigue resistance and guidelines for fatigue testing are also presented.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002370
EISBN: 978-1-62708-193-1
... Abstract This article describes a scientific approach to the planning and evaluation of fatigue tests based on the determination of probabilities for detected fracture positions within the observed range of fatigue scatter. It schematically illustrates a constant-amplitude stress cycling about...
Abstract
This article describes a scientific approach to the planning and evaluation of fatigue tests based on the determination of probabilities for detected fracture positions within the observed range of fatigue scatter. It schematically illustrates a constant-amplitude stress cycling about a possible mean load that leads to the fracture of a single part or specimen. The article discusses the evaluation of the range of transition and of the finite-endurance range for fatigue curves. It concludes with a discussion on extrapolation from the range of finite endurance into the range of transition.
Image
Published: 01 January 1987
Image
Published: 01 January 2002
Fig. 16 Carbon steel counterbalance spring that failed during fatigue testing. (a) Macrograph showing fracture locations (arrows). 1 3 ×. (b) Fracture surface showing dark band (arrow) that nucleated fracture. 6×. (c) Etch pits in surface. 100×
More
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Image
Published: 01 December 1998
1