Skip Nav Destination
Close Modal
Search Results for
fatigue life assessment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 560 Search Results for
fatigue life assessment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... Abstract This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment. elevated-temperature life assessment fabrication failure analysis fatigue life assessment fitness-for-service life assessment material defects nondestructive inspection stress...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004128
EISBN: 978-1-62708-184-9
... geometric parameters such as pit dimensions, surface roughness, loss of metal thickness, and volume increase due to pillowing to quantitatively characterize the types of corrosion. It also explains the two most common fatigue life assessment methods used in the military aerospace industry: fatigue crack...
Abstract
Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft inspection intervals, and perform repair and maintenance of aircraft in service. It illustrates the types of corrosive attack observed in aircraft structures, including uniform, galvanic, pitting, filiform, fretting, intergranular, exfoliation corrosion, and stress-corrosion cracking. The article discusses geometric parameters such as pit dimensions, surface roughness, loss of metal thickness, and volume increase due to pillowing to quantitatively characterize the types of corrosion. It also explains the two most common fatigue life assessment methods used in the military aerospace industry: fatigue crack initiation and crack growth analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
.... The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... of proposed methodologies to assess the fatigue behavior of different welded joint geometries. The most widely used procedure for assessing the fatigue performance of welded joints is the S-N curve approach. In general, the fatigue life of a component is comprised of initiation and propagation phases...
Abstract
Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... Abstract The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
... failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination...
Abstract
In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination is a critical issue in fatigue and generally results from high interlaminar normal and shear stresses. The article schematically illustrates the structural elements in which high interlaminar stresses are common. It concludes with a discussion on the classification of fatigue models such as mechanistic or phenomenological, for composite materials under cyclic loading.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003706
EISBN: 978-1-62708-182-5
... mechanics methods and fundamental engineering principles. Engineering computations are combined with damage tolerance assessment concepts to formulate a model that approximates the life degradation effects of corrosion with both sequential and concurrent fatigue. Although the life predictions are calculated...
Abstract
This article discusses corrosion fatigue, its effects on the damage tolerance of aircraft, and its predictive modeling. A conceptual framework is presented that incorporates two distinctive cyclic-based life-prediction philosophies and expands them both to include the time domain in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion types: crevice and pitting corrosion. It describes the rationale and techniques needed to apply the age-based structural integrity processes to in-service structures in order to realize the benefits throughout the full structural life cycle.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... Abstract Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002384
EISBN: 978-1-62708-193-1
... loading. As stated earlier, there are preexisting metallurgical discontinuities in welded joints to some degree. In Fig. 3 these are referred to as start-of-life defect size, a 0 . If the applied loading conditions are favorable, fatigue cracks start from the initial starter cracks represented...
Abstract
This article discusses the various options for controlling fatigue and fractures in welded steel structures, with illustrations. It describes the factors that influence them the most. The article details some of the leading codes and standards for designing against failure mechanisms. Codes are presented for fitness-for-service and standards for fatigue and fracture control.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002350
EISBN: 978-1-62708-193-1
... Principal testing data description Safe-life, infinite-life Stress-life S - N Safe-life, finite-life Strain-life ε- N Damage tolerant Fracture mechanics da / dN − Δ K These “lifing” or assessment techniques correspond to the historical development and evolution of fatigue...
Abstract
Fatigue properties are an integral part of materials comparison activities and offer information for structural life estimation in many engineering applications. This article presents three general approaches to fatigue design, with a discussion on their respective attributes. These include infinite-life criterion, finite-life criterion, and damage tolerant criterion. The article describes the individual property requirements of these approaches. It also presents selected examples of properties that reflect some detail of these approaches.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002371
EISBN: 978-1-62708-193-1
... tests. corrosion fatigue properties fatigue resistance surface treatment wear SURFACE CONDITION and manufacturing-related surface alterations strongly influence fatigue resistance. Data that characterize their effects provide the means to extend life prediction methods (which are based...
Abstract
This article presents an approach to characterize the effects of surface treatments to enhance fatigue properties, with particular concern for wear, corrosion, and thermal effects. It discusses the considerations in selecting fabrication or subsequent surface processing procedures to improve fatigue resistance in terms of their respective effects on fatigue performance. The article details the experimental data sets representing specific materials, typical test geometries, and a range of different processing methods used to enhance resistance as compared to results for laboratory tests.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002413
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the isothermal fatigue of solder materials. It discusses the effect of strain range, frequency, hold time, temperature, and environment on isothermal fatigue life. The article provides information on various isothermal fatigue testing methods used to assess...
Abstract
This article focuses on the isothermal fatigue of solder materials. It discusses the effect of strain range, frequency, hold time, temperature, and environment on isothermal fatigue life. The article provides information on various isothermal fatigue testing methods used to assess solder joint reliability. These include the accelerated thermal cycling test and isothermal mechanical deflection system test.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006462
EISBN: 978-1-62708-190-0
... military nuclear power life assessment commerial nuclear power pressure vessels fired boilers NONDESTRUCTIVE TESTING (NDT) and nondestructive evaluation (NDE) use noninvasive measurement techniques to gain information about defects and various properties of materials, components, and structures...
Abstract
Both nondestructive testing (NDT) and nondestructive evaluation (NDE) use noninvasive measurement techniques to gain information about defects and various properties of materials, components, and structures. This article begins with a discussion on the historical development of quantitative measurement techniques, evaluation reliability, and quantitative interpretation of nondestructive inspection methods. The common nondestructive evaluation methods, along with their uses and limitations, are summarized in a table. The article conceptually illustrates the interplay of NDE and fracture mechanics in the damage tolerant approach. It concludes with information on pressure vessel applications that can be separated into three protocols used by military nuclear power, commercial nuclear power, and non-nuclear pressure vessels and/or fired boilers.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002396
EISBN: 978-1-62708-193-1
.... The traditional approach to fatigue design with ferrous alloys, based on endurance limits and infinite life criterion, has been supplanted by approaches based on finite-life behavior that emphasize the cyclic deformation aspects of the fatigue process ( Ref 4 , 5 ). Central to these approaches for predicting...
Abstract
This article reviews general trends in the cyclic response for representative commercial alloys to establish the spectrum of cyclic properties attainable through microstructural alteration. Individual alloy classes are examined in detail to assess the understanding of relationships between microstructure and fatigue resistance. These alloys classes include ferritic-pearlitic alloys, martensitic alloys, maraging steels, and metastable austenitic alloys. The article also discusses the role of internal defects and selective surface processing in influencing fatigue performance.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... in high-temperature applications. The complex effects of creep-fatigue interaction are also discussed, although more detail on this is described in the article “Thermomechanical Fatigue: Mechanisms and Practical Life Analysis” in this Volume. Life assessment is also covered in the article “Elevated...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... been noted in previous Sections of this Volume, there is a wide range of material/component life assessment strategies appropriate to different industries and damage mechanisms, and these can be implemented within either a probabilistic or deterministic framework. Fatigue is perhaps the most widely...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... and associated failures of alloys used in high-temperature applications. The complex effects of creep-fatigue interaction are also discussed, although more detail on this is described in the article “Thermomechanical Fatigue: Mechanisms and Practical Life Analysis” in this Volume. Life assessment is also...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
1