1-20 of 1372 Search Results for

fatigue life

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... load cells extensometry strain measuring devices environmental chambers graphic recorders furnaces heating systems baseline isothermal fatigue testing creep-fatigue interaction thermomechanical fatigue fatigue resistance Fatigue closed loop control advanced software tools fatigue life...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... Abstract This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002365
EISBN: 978-1-62708-193-1
... Abstract This article discusses two major approaches in estimating fatigue life from the viewpoint of their use as engineering methods. These include the stress-based (S-N curve) approach and strain-based approach. The stress-based and strain-based approaches are compared, with some comments...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002420
EISBN: 978-1-62708-193-1
... Abstract The four-point method to estimate fatigue life behavior from tensile properties allows the construction of fatigue life curves from more readily available handbook data. This article provides information on the strain-based four-point method and the stress-based four-point method...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002376
EISBN: 978-1-62708-193-1
... Abstract This article provides information on the nominal compositions of high-carbon bearing steels and carburizing bearing steels. It discusses the bearing fundamentals with emphasis on surface contact, stresses, and fatigue life of bearings. The article describes bearing life prediction...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
... Abstract In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented. coupling interactions fatigue life prediction thermomechanical fatigue THERMOMECHANICAL FATIGUE (TMF) is the general...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... Abstract Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002375
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the various kinds of gear wear, including fatigue, impact fracture, wear, and stress rupture, describes how gear life in service is estimated. It presents the rules concerning lubricants in designing gearing and analyzing failures of gears. The article presents...
Image
Published: 01 January 1990
Fig. 21 Effect of case depth on fatigue life. Fatigue tests on induction-hardened 1038 steel automobile axle shafts 32 mm (1 1 4 in.) in diameter. Case depth ranges given on the chart are depths to 40 HRC. Shafts with lower fatigue life had a total case depth to 20 HRC of 4.5 to 5.2 More
Image
Published: 01 January 1990
Fig. 18 Plot of fatigue strength versus fatigue life for ductile iron in both the unnotched and 45° V-notched condition: (a) Ferritic (60-40-18 annealed). (b) Pearlitic (80-55-06 as-cast) Grade Tensile strength Unnotched Notched Stress concentration factor Endurance limit More
Image
Published: 01 December 1998
Fig. 6 Fatigue strength versus fatigue life for ductile iron in both the unnotched and 45° Charpy V-notched condition. (a) Ferritic (60–40–18 annealed). (b) Pearlitic (80-55-06 as-cast) Grade Tensile strength Unnotched Notched Stress concentration factor Endurance limit More
Image
Published: 01 January 1993
Fig. 14 Isothermal fatigue life calculation for thermal fatigue resistance approximation. (a) Package/solder joint geometry. L is the package size (distance between solder joints), α i is the thermal expansion coefficient, and t is the solder joint gap. (b) Fatigue life versus total shear More
Image
Published: 01 January 2002
Fig. 19 Effect of in-phase (IP) and out-of-phase (OP) cycling on the fatigue life of IN-738. (a) Strain life data for the various wave forms. (b) Cycles to crack initiation based on the maximum tensile stresses More
Image
Published: 01 January 2002
Fig. 23 Correlation between striation spacing and fatigue life of permanent mold cast modified A356 aluminum alloy specimens tested at 0.5% strain amplitude More
Image
Published: 01 January 1990
Fig. 52 Fatigue life under axial loading for AISI 4340 alloy steel (1310 MPa, or 190 ksi, tensile strength) wetted with mercury. Source: Ref 291 More
Image
Published: 01 January 1990
Fig. 35 Effect of strain rate and grain size on the fatigue life of various stainless steels at elevated temperatures. Grain size has the greatest influence on fatigue life when hold times are increased. Test conditions: total strain range = 1.0%; test temperature, 593 to 600 °C (1100 to 1110 More
Image
Published: 01 January 1990
Fig. 24 S-N fatigue life curves for damage-tolerant 8090 sheet (8090-T81) and clad 2024-T3 sheet. Stress ratio ( R ), 0.1; cyclic frequency, 80 Hz. (a) Smooth specimens. Theoretical stress concentration factor ( K t ) = 1. (b) Notched specimens. K t = 2.6 More
Image
Published: 01 January 2005
Fig. 25 Effects of (a) maximum and (b) minimum temperatures on the fatigue life of En 25 mild steel. Source: Ref 2 More