1-20 of 714 Search Results for

fatigue fracture modes

Sort by
Image
Published: 01 January 2002
Fig. 44 Types of alternate microscopic fracture modes in fatigue. (a) Ductile striations triggering cleavage. (b) Cyclic cleavage. (c) Alpha-beta interface fracture. (d) Cleavage of alpha in an alpha-beta phase field. (e) Forked intergranular cracks in a hard matrix. (f) Forked intergranular More
Image
Published: 15 January 2021
Fig. 45 Types of alternate microscopic fracture modes in fatigue. (a) Ductile striations triggering cleavage. (b) Cyclic cleavage. (c) Alpha-beta interface fracture. (d) Cleavage of alpha in an alpha-beta phase field. (e) Forked intergranular cracks in a hard matrix. (f) Forked intergranular More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... component. As with other fracture modes, proper identification of fatigue requires understanding of the fracture behavior of the particular material subject to failure analysis. At least some knowledge of environmental and service conditions is usually necessary. Evaluation of loading conditions, often...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003380
EISBN: 978-1-62708-195-5
... the characterization and analysis of delamination. The article also reviews the prediction of delamination factors, such as flexbeam fatigue life, and skin/stiffener pull-off strength and life. composite materials fracture failure mode composite delamination opening shearing mode in-plane shearing mode...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003466
EISBN: 978-1-62708-195-5
... the load is applied perpendicular to the composite laminate and failure occurs in the plane of the reinforcement. Interlaminar fractures occur following mode I tension or fatigue loading, mode II shear or fatigue loading, flexural loading, and impact loading on the surface of the laminate. Interlaminar...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002352
EISBN: 978-1-62708-193-1
..., fracture modes can be classified into four general categories, based on the appearance of fracture surfaces: dimple rupture, cleavage, fatigue, or decohesive rupture (or intergranular fracture from crack growth mechanisms such as creep or stress corrosion) ( Ref 1 ). This classification is viable, because...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000603
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that covers pearlitic and ferritic ductile irons. The fractographs display the following: brittle cleavage fracture; fatigue crack propagation; fatigue and monotonic fracture surfaces; fracture modes in slow monotonic loading and impact loading...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach. brittle fracture buckling...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003320
EISBN: 978-1-62708-176-4
... is difficult to estimate due to the friction between mating crack surfaces. A typical morphology of the fracture surface under these conditions is termed “factory roof” morphology ( Ref 17 ). Fig. 19 Circumferentially notched torsion specimen for mode III fatigue crack propagation. Dimensions are in mm...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
... Abstract This article begins with a discussion of the basic fracture modes, including dimple ruptures, cleavages, fatigue fractures, and decohesive ruptures, and of the important mechanisms involved in the fracture process. It then describes the principal effects of the external environment...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002398
EISBN: 978-1-62708-193-1
... size, defect size, stress modes, and waveform types. The article discusses various fracture mechanics in cast steels: cyclic stress-strain behavior and low- and high-cycle fatigue life behavior; plane-stress fracture toughness; plane-strain fracture toughness; constant-amplitude fatigue crack...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... mechanisms are a key component in categorizing damage and failures. The definitions are: Damage mode: Description of the physical characteristics of damage observed. For example, intergranular fracture, buckling, transgranular beach marks, and pitting can be thought of as damage modes. Damage mode...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
...–2000 3–5 (2.7–4.6) Fracture Zirconia 5.8 210 (30) 1100–1400 8–12 (7.3–10.9) Spalling Steel 7.8 200 (29) 1000 >16 (>14.6) Spalling The spalling fatigue mode has been found in various test machines ( Ref 43 , 44 , 46 , 48 , 51 , 56 ). For example, the fatigue life...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006323
EISBN: 978-1-62708-179-5
... of the main fracture modes and their characteristic fractographic features. It discusses the four principal fracture modes: dimple rupture (or fracture), cleavage, fatigue, and intergranular fracture. The article provides information on special cases of environmentally assisted fracture. It concludes...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... in differentiating damage mechanisms in a system. For example, fatigue is often identified as both a damage mode and a damage mechanism. A fatigue damage mode is the observable damage that occurs under fatigue loading cycles (e.g., the presence of beachmarks). Classifying fatigue as a damage mechanism...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002366
EISBN: 978-1-62708-193-1
... Abstract This article provides information on the typical experimental observations of formation and propagation of small fatigue cracks under various stress states and explores the relation to long crack fracture mixed-mode fracture mechanics. It discusses state I crystallographic and stage II...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
..., a range of magnifications is required to portray the surface accurately. Transgranular Fracture Modes Transgranular fracture modes include cleavage and fatigue. The features of each are discussed below. See the sections “Cleavage” and “Fatigue” in the article “Modes of Fracture” for a description...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
..., the crack initiates in a cleavage mode from the tip of the fatigue crack. In region II s , the fracture toughness to initiate unstable crack propagation increases with increasing temperature. This increase in crack-initiation toughness corresponds to an increase in the size of the plastic zone...
Image