Skip Nav Destination
Close Modal
Search Results for
fatigue cracks
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2493
Search Results for fatigue cracks
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... Abstract This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002358
EISBN: 978-1-62708-193-1
... are addressed, including increased scatter in small-crack data and recommended small-crack test methods. The article highlights the applications where small cracks may be particularly important. crack behavior small fatigue cracks small-crack test method FATIGUE CRACKS are small for a significant...
Abstract
This article defines different types of small cracks and identifies the different factors that influence small-crack behavior. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important material data issues are addressed, including increased scatter in small-crack data and recommended small-crack test methods. The article highlights the applications where small cracks may be particularly important.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002357
EISBN: 978-1-62708-193-1
... thresholds, and titanium alloy crack growth thresholds. The near-threshold behavior of nickel-base superalloys is described. The article briefly reviews the threshold results for fiber-reinforced, whisker-reinforced, and particulate-re-inforced metal-matrix alloys. It explains the near-threshold fatigue...
Abstract
This article describes the types of closure mechanisms, including plasticity-induced, roughness-induced, oxide-induced, and fretting-debris-induced. It discusses test techniques used to establish a valid threshold value for aluminum alloy crack growth thresholds, steel crack growth thresholds, and titanium alloy crack growth thresholds. The near-threshold behavior of nickel-base superalloys is described. The article briefly reviews the threshold results for fiber-reinforced, whisker-reinforced, and particulate-re-inforced metal-matrix alloys. It explains the near-threshold fatigue crack propagation in welded joints and the fundamental considerations for modeling threshold behavior. The article concludes with a discussion on the effects of thresholds in the engineering design process.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002355
EISBN: 978-1-62708-193-1
... Abstract This article presents an overview of fatigue crack nucleation from the point of view of the material microstructure and its evolution during cycling. It describes the sites of microcrack nucleation at the free surfaces. The article discusses the relation of dislocation structures...
Abstract
This article presents an overview of fatigue crack nucleation from the point of view of the material microstructure and its evolution during cycling. It describes the sites of microcrack nucleation at the free surfaces. The article discusses the relation of dislocation structures and surface relief and reviews the mechanisms of crack nucleation. The damage of material due to crack nucleation, the extent (in terms of the number of cycles) of the nucleation stage, and the factors influencing crack nucleation are discussed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002360
EISBN: 978-1-62708-193-1
... Abstract This article describes the fracture mechanics in fatigue. It discusses the fatigue crack growth rate (FCGR) testing that consists of several steps, beginning with selecting the specimen size, geometry, and crack length measurement technique. The two major aspects of FCGR test analysis...
Abstract
This article describes the fracture mechanics in fatigue. It discusses the fatigue crack growth rate (FCGR) testing that consists of several steps, beginning with selecting the specimen size, geometry, and crack length measurement technique. The two major aspects of FCGR test analysis are to ensure suitability of the test data and to calculate growth rates from the data. The article presents an analysis of the crack growth data. Optical, compliance, and electric potential difference are the most common laboratory techniques, and the article reviews their merits and limitations. Forced-displacement, forced-vibration, rotational-bending, resonance, and servomechanical systems for various loading conditions are also discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003317
EISBN: 978-1-62708-176-4
... Abstract Testing and characterization of fatigue crack growth are used extensively to predict the rate at which subcritical cracks grow due to fatigue loading. ASTM standard E 647 is the accepted guideline for fatigue crack growth testing (FCGR) and is applicable to a wide variety of materials...
Abstract
Testing and characterization of fatigue crack growth are used extensively to predict the rate at which subcritical cracks grow due to fatigue loading. ASTM standard E 647 is the accepted guideline for fatigue crack growth testing (FCGR) and is applicable to a wide variety of materials and growth rates. The two most widely used types of specimens are the middle-crack tension and compact-type specimens. This article describes the factors affecting the selection of appropriate geometries of these specimens: consideration of material availability and raw form, desired loading condition, and equipment limitations. Various crack measurement techniques, including optical, ultrasonic, acoustic emission, electrical, and compliance methods, are also reviewed. The article discusses the two major aspects of FCGR test analysis: to ensure suitability of the test data and to calculate growth rates from the data.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005419
EISBN: 978-1-62708-196-2
... Abstract Understanding fatigue crack growth is critical for the safe operation of many structural components. This article reviews the standard fracture mechanics and methods to determine the crack growth rate for a material and loading condition experimentally. It also addresses the two most...
Abstract
Understanding fatigue crack growth is critical for the safe operation of many structural components. This article reviews the standard fracture mechanics and methods to determine the crack growth rate for a material and loading condition experimentally. It also addresses the two most important aspects of crack-growth modeling: loading environment and crack geometry.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002359
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual...
Abstract
This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual stresses, texture, loading mode, environment, and crack coalescence. Measurement of crack shapes or aspect ratios during fatigue crack growth can be performed by a number of techniques. The article describes the estimation of the stress-intensity factor for arbitrarily-shaped cracks and failure prediction methods for arbitrarily-shaped flaws.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009217
EISBN: 978-1-62708-176-4
... Abstract Fatigue crack growth rate testing and data analysis are performed to characterize the crack propagation resistance of material environment combinations in order to predict crack growth life under anticipated stress histories. This article presents analyses performed on the numerical...
Abstract
Fatigue crack growth rate testing and data analysis are performed to characterize the crack propagation resistance of material environment combinations in order to predict crack growth life under anticipated stress histories. This article presents analyses performed on the numerical output of crack growth rate tests, including the analysis framework for modeling fatigue crack growth rate data. It describes the numerical methods for calculating da/dN as a function of stress intensity factor. The article discusses the principles in fatigue crack growth damage analysis.
Image
Published: 01 January 1987
Fig. 71 Fatigue cracks in an unbroken (a) and completely broken (b) aluminum alloy. (a) Etched with Kroll's reagent. 680× (b) Etched with Keller's reagent. 510×
More
Image
Published: 01 January 2002
Fig. 15 Stress fields and corresponding torsional-fatigue cracks. (a) and (b) Shaft with keyway. (c) Shaft with splines
More
Image
Published: 01 January 2002
Fig. 16 Two views of the plate surface with fatigue cracks at the fifth hole. White arrow in the left-hand figure indicates tool mark from bending that does not interfere with fatigue damage structure. See text for further description. Both 110×
More
Image
Published: 01 January 2002
Fig. 17 Top surface of broken plate of type 316LR stainless steel. Fatigue cracks parallel to the fracture edge and a wide area exhibiting primary fatigue deformation are visible. 65×
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 26 Fatigue cracks in laboratory test specimens of (a) a steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner, and (b) a rotating bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle
More
Image
Published: 01 January 2002
Fig. 30 Schematic of the initiation of torsional-fatigue cracks in shaft subjected to longitudinal shear (a) or transverse shear (b). Dashed lines indicate other cracks that can appear when torsional stresses are reversed.
More
Image
Published: 01 January 2002
Fig. 14 Comparison of SCC and corrosion fatigue cracks in copper alloy C26000 (cartridge brass, 70%). (a) Typical intergranular stress-corrosion cracks in tube that was drawn, annealed, and cold reduced 5%. The cracks show some branching. H 4 OH plus H 2 O etch, 150×. (b) Typical transgranular
More
Image
Published: 01 January 2006
Fig. 6 Catalytic converter shell with thermal fatigue cracks in formed exterior surface rib. In cross section at bottom, note numerous outer-diameter surface cracks. 50×
More
Image
Published: 01 January 2003
Fig. 18 Section showing fretting damage and fatigue cracks in Al-6Zn-3Mg alloy. Courtesy of R.B. Waterhouse, University of Nottingham
More
Image
in Failures from Various Mechanisms and Related Environmental Factors
> Metals Handbook Desk Edition
Published: 01 December 1998
Fig. 44 Corrosion-fatigue cracks in carbon-steel boiler tube originated at corrosion pits. Corrosion products are present along the entire length of the cracks. 250×
More
1