Skip Nav Destination
Close Modal
By
M.R. Mitchell
By
Stephen D. Antolovich, Ashok Saxena
By
Robert L. Amaro, Stephen D. Antolovich, Ashok Saxena
By
David L. McDowell
By
Mitchell P. Kaplan, John W. Lincoln
By
T. Swift
Search Results for
fatigue analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1249
Search Results for fatigue analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fundamentals of Modern Fatigue Analysis for Design
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002364
EISBN: 978-1-62708-193-1
... initiation. It presents an overview of the strain-based, as opposed to stress-based, criterion of material behavior and fatigue analysis. The article describes the cyclic stress-strain behavior of metals to illustrate the inadequacy of the monotonic or tensile stress-strain curve in accounting for material...
Abstract
Fatigue crack initiation is an important aspect of materials performance in design. This article summarizes some fundamental concepts and procedures for the fatigue life prediction of relatively homogeneous, wrought metals when a major portion of total life is exhausted in crack initiation. It presents an overview of the strain-based, as opposed to stress-based, criterion of material behavior and fatigue analysis. The article describes the cyclic stress-strain behavior of metals to illustrate the inadequacy of the monotonic or tensile stress-strain curve in accounting for material instabilities caused by cyclic deformations. It discusses the effect of mean stress on fatigue life and presents the analysis of cumulative fatigue damage. The article concludes with examples of application techniques for fatigue life prediction.
Image
in Fatigue Resistance of Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Image
Philosophical construct for simulation-assisted fatigue analysis as focused...
Available to Purchase
in Microstructure-Sensitive Modeling and Simulation of Fatigue
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 9 Philosophical construct for simulation-assisted fatigue analysis as focused on relating variability of structure to properties or responses, with emphasis on distributions and probabilistic approaches. LCF, low-cycle fatigue
More
Image
Schematic of specimens used for total-life fatigue analysis. Tests can be d...
Available to PurchasePublished: 15 May 2022
Fig. 10 Schematic of specimens used for total-life fatigue analysis. Tests can be done (a) in torsion, (b) with a rotating cantilever, (c) with a rotating beam, (d) with cantilever reverse bending, or (e) under axial loading.
More
Image
Fatigue analysis methods in Part 14 of API 579-1/ASME FFS-1, Fitness-for-Se...
Available to PurchasePublished: 30 August 2021
Fig. 28 Fatigue analysis methods in Part 14 of API 579-1/ASME FFS-1, Fitness-for-Service. Source: Ref 16
More
Image
Schematic of specimens used for total life fatigue analysis. Tests can be d...
Available to PurchasePublished: 01 January 2000
Fig. 1 Schematic of specimens used for total life fatigue analysis. Tests can be done (a) in torsion, (b) with a rotating cantilever, (c) with a rotating beam, (d) with cantilever reverse bending, or (e) under axial loading
More
Book Chapter
Thermomechanical Fatigue: Mechanisms and Practical Life Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... stress analysis and fracture mechanics analyses of the casing. fracture mechanics residual life prediction stress analysis thermomechanical fatigue turbine casing THERMOMECHANICAL FATIGUE (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Book Chapter
Thermomechanical Fatigue—Mechanisms and Practical Life Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... , respectively. Fatigue case studies, in which practical systems are analyzed from a fracture mechanics perspective, are also presented in Ref 26 . Using Finite-Element Analysis Case Study: Prediction of Residual Life in a Turbine Casing. Casings for a ship’s service turbine generator (SSTG) are cast...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009217
EISBN: 978-1-62708-176-4
... Abstract Fatigue crack growth rate testing and data analysis are performed to characterize the crack propagation resistance of material environment combinations in order to predict crack growth life under anticipated stress histories. This article presents analyses performed on the numerical...
Abstract
Fatigue crack growth rate testing and data analysis are performed to characterize the crack propagation resistance of material environment combinations in order to predict crack growth life under anticipated stress histories. This article presents analyses performed on the numerical output of crack growth rate tests, including the analysis framework for modeling fatigue crack growth rate data. It describes the numerical methods for calculating da/dN as a function of stress intensity factor. The article discusses the principles in fatigue crack growth damage analysis.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009219
EISBN: 978-1-62708-176-4
... or strain levels are included. The article also summarizes the consolidation of fatigue data generated at different conditions. fatigue curve fatigue data analysis fatigue resistance fatigue strength strength degradation model FATIGUE DATA are subject to considerable scatter or variability...
Abstract
This article reviews the planning of fatigue experiments, including the structure of a test plan, randomization, and nuisance variables. The statistical characterization of the S/N (stress/life) or e/N (strain/life) response of a single material tested under a single condition is discussed. The techniques for defining a mean fatigue curve and evaluating scatter or variability about that mean are explained. The article presents the standard techniques for statistical characterization of the fatigue strength or fatigue limit of a single material by use of the Probit method, the up-and-down (staircase) method, and two-point procedures. Stress-level selection methods are also presented. The article discusses the comparison of the fatigue behavior of two or more materials for data generated at a single stress or strain level. Treatments to compare data generated over a range of stress or strain levels are included. The article also summarizes the consolidation of fatigue data generated at different conditions.
Image
Thermoelastic stress analysis (TSA) results from fatigue cycling of open ho...
Available to PurchasePublished: 01 August 2018
Fig. 3 Thermoelastic stress analysis (TSA) results from fatigue cycling of open hole aluminum specimen. Data is subdivided into (a) X -data, (b) Y -data, (c) magnitude, and (d) phase as described in the section “ Thermoelastic Data ” in this article.
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002369
EISBN: 978-1-62708-193-1
... Abstract There are two parts to deal with uncertainty in fatigue design: determining the distributions of possible values for all uncertain inputs and calculating the probability of failure due to all the uncertain inputs. This article discusses the sources of uncertainty in a fatigue analysis...
Abstract
There are two parts to deal with uncertainty in fatigue design: determining the distributions of possible values for all uncertain inputs and calculating the probability of failure due to all the uncertain inputs. This article discusses the sources of uncertainty in a fatigue analysis, such as the material properties, distribution of applied stress levels within a given environment, environments or loading intensities, and modeling or prediction. It presents a probabilistic approach for analyzing the uncertainties and determining the level of reliability (probability of failure).
Image
Life assessment of rotating equipment damaged by exposure to excessive temp...
Available to Purchase
in Failure Analysis and Life Assessment of Structural Components and Equipment
> Failure Analysis and Prevention
Published: 01 January 2002
and a tempered structure. After removal of the martensite, fatigue analysis verified that the journal could be put back in service.
More
Image
Life assessment of rotating equipment that has been damaged by exposure to ...
Available to Purchase
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
layer and a tempered structure. Following removal of the martensite, fatigue analysis verified that the journal could be put back in service.
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... Abstract This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Book Chapter
Microstructure-Sensitive Modeling and Simulation of Fatigue
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... and strain field to influence of only the remote nominal fields, incorporating the notch as part of the crack. The treatment of fatigue crack initiation, involving the formation and early growth of cracks to some detectable size, has traditionally been distinguished from damage-tolerant analysis, which...
Abstract
The purposes and methods of fatigue modeling and simulation in high-cycle fatigue (HCF) regime are to design either failsafe components or components with a finite life and to quantify remaining life of components with pre-existing cracks using fracture mechanics, with the intent of monitoring via an inspection scheme. This article begins with a discussion on the stages of the fatigue damage process. It describes hierarchical multistage fatigue modeling and several key points regarding the physics of crack nucleation and microstructurally small crack propagation in the HCF regime. The article provides a description of the microstructure-sensitive modeling to model fatigue of several classes of advanced engineering alloys. It describes the various modeling and design processes designed against fatigue crack initiation. The article concludes with a discussion on the challenges in microstructure-sensitive fatigue modeling.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001038
EISBN: 978-1-62708-161-0
... fatigue life testing of steel parts. See Table 1 for correction factors from part diameter and type of loading. Source: Ref 6 Strain-Based Approach To Fatigue A strain-based approach to fatigue, developed for the analysis of low-cycle fatigue data, has proved to be useful for analyzing long...
Abstract
The process of fatigue failure consists of three stages: initial fatigue damage leading to crack initiation; crack propagation to some critical size; and final, sudden fracture of the remaining cross section. Variations in mechanical properties, composition, microstructure, and macrostructure, along with their subsequent effects on fatigue life, have been studied extensively to aid in the appropriate selection of steel to meet specific end-use requirements. The metallurgical variables having the most pronounced effects on the fatigue behavior of carbon and low-alloy steels are strength, ductility, cleanliness, residual stresses, surface conditions, and aggressive environments. The article discusses the stress-based and strain-based approach to fatigue. The application of fatigue data in engineering design is complicated by the characteristic scatter of fatigue data; variations in surface conditions of actual parts; variations in manufacturing processes such as bending, forming, and welding; and the uncertainty of environmental and loading conditions in service.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002350
EISBN: 978-1-62708-193-1
... to the components and must take into account as many influences as possible to reflect the actual product situation. In application, fatigue is a detail analysis, trying to assess what will occur at a particular location of a component or assembly under cyclic loading. The topic of fatigue properties is very...
Abstract
Fatigue properties are an integral part of materials comparison activities and offer information for structural life estimation in many engineering applications. This article presents three general approaches to fatigue design, with a discussion on their respective attributes. These include infinite-life criterion, finite-life criterion, and damage tolerant criterion. The article describes the individual property requirements of these approaches. It also presents selected examples of properties that reflect some detail of these approaches.
Book Chapter
The U.S. Air Force Approach to Aircraft Damage Tolerant Design
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002394
EISBN: 978-1-62708-193-1
... in the airframe of the C-5A aircraft, which was designed using stress analysis and fatigue as the primary design tools. Fracture mechanics was used as a tool to determine the extent of these problems and to define “a fix” for them. During the 1970s and 1980s, the U.S. Air Force established and evaluated a set...
Abstract
The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes the particular aspects that relate to damage tolerance in aircraft design. It discusses the use of fracture mechanics as a method of predicting failure, understanding failure mechanisms, and suggesting inspection methods to protect against failure in pressure vessels. Various programs of U.S. Air Force to design aircraft structure, namely, airframe structural integrity programs, engine structural integrity program, and mechanical subsystems structural integrity program are also discussed.
Book Chapter
Damage Tolerance Certification of Commercial Aircraft
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
... residual strength for longitudinal damage Residual Strength Analysis Validation Although nonlinear analysis is necessary for some configurations, linear elastic fracture mechanics has been used with a high degree of success to calculate residual strength in the presence of fatigue damage...
Abstract
Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification.
1