1-20 of 176 Search Results for

fail-active designs

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005196
EISBN: 978-1-62708-187-0
... under both normal (black arrows) and emergency conditions (white arrows). Standby emergency pump is activated if the primary pump fails. In addition, with channel furnaces, standby generators are often employed to maintain cooling to the inductor. The selection of lining material is determined...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005219
EISBN: 978-1-62708-187-0
... determined based on historical records. For example, records for a particular tool indicate that it frequently requires repair for a broken core. Further investigation reveals that the core always fails before the typical production run of 10,000 cycles. To minimize repair time: Spare cores must be kept...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... statistical variability and uncertainty that influence the adequacy of a design. Fundamentally, designing to prevent service failures is a statistical problem. In simplistic terms, an engineered component fails when the resistance to failure is less than the imposed service condition. Depending on the...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009020
EISBN: 978-1-62708-187-0
... Abstract In terms of component design, casting offers a great amount of flexibility. This article discusses the parameters that can drive the geometry of casting design from a process standpoint. It provides information on the design of junctions and addresses considerations of secondary...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003972
EISBN: 978-1-62708-185-6
... critical activity in production of tooling; if the design fails to produce the article correctly (due to fractures, incorrect dimensions, or tolerances), then modifications are required and the tool manufacturing process starts over. Computer-aided design tools are increasingly being used to improve the...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.9781627081948
EISBN: 978-1-62708-194-8
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... the foam pattern and the sand during casting. The thin ceramic shell allows the foam decomposition materials to escape through it and into the sand at the proper rate. If it is too impermeable for the foam decomposition s to pass through it, the molten metal could freeze off and the part would fail to...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... usually fail from tensile stresses. His methodology has been used extensively in the design of ceramic components for engines ( Ref 5 , 6 , 7 ) and has been shown to work quite well for a number of applications. In testing and evaluation of ceramics in actual operating environments, it has been...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005923
EISBN: 978-1-62708-166-5
... Abstract Quenchant agitation can be obtained by circulating quenchant in a quench tank through pumps and impellers. The selection of the agitation method depends on the tank design, type and volume of the quenchant, part design, and the severity of quench required. This article describes flow...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004022
EISBN: 978-1-62708-185-6
...-deformed billet material is twice as important as increasing the die life. But how are the right values for w die and w billet chosen? If the selected values for w die and w billet fail to represent the real design requirements, material cost, labor cost, supply chain constraints, or myriad...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
.... Like most ceramic materials, glass-ceramics are generally brittle and fail with lower stress in tension than in compressive loading ( Table 22 ). Performance in service is affected by both a size effect ( Ref 26 ) and stress loading rate, the latter not generally noted in brittle materials ( Ref 27...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003087
EISBN: 978-1-62708-199-3
... undesirable product failure mode. An understanding of how a part, assembly, or entire structure can fail and the ramifications of that failure are essential in providing a safe and reliable design. The growing environmental and regulatory demand to consider the entire life cycle of a product could require...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005330
EISBN: 978-1-62708-187-0
... final fracture. Most failures in new designs are due to inadequate design, not poor-quality part production. Most field failures are due to product misuse and not poor-quality component manufacture. When a part is subjected to unsurvivable loads, it will fail through the most heavily loaded section, and...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
... failed coatings will reach the containment sumps and screens and affect the performance of SR, post-LOCA cooling systems. Some of these design changes are encompassed in the following strategies: Coatings are not used in the immediate vicinity of the containment recirculation screens to minimize the...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003812
EISBN: 978-1-62708-183-2
..., but an inadequate grade can corrode and perforate more rapidly than a plain carbon steel will fail by uniform corrosion. Selection of the appropriate grade of stainless steel is then a balancing of the desire to minimize cost and the risk of corrosion damage by excursions of environmental conditions...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003843
EISBN: 978-1-62708-183-2
... air bubbles in the surface of formed concrete. Honeycomb in formed surfaces occurs when mortar fails to fill all the spaces between coarse aggregate particles in concrete. Congested reinforcement, segregation, and insufficient fine aggregate content can contribute to the problem. Higher concrete...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... type of hydrogen damage. Carbon and low-alloy steels can fail by several types of hydrogen damage. Failure by hydrogen embrittlement is often encountered with high-strength steels, especially when the tensile strength is above 1034 MPa (150 ksi). Low-strength steels are considered resistant to hydrogen...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... from which they are constructed cannot “fail” in the same sense as humans. They respond to their environments in ways which designers/engineers/scientists should understand and anticipate. So, the failure presented for analysis is really a failure to meet expectations. Whose expectations? Understanding...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... to failed regulatory compliance. The context of FDA regulation is worth mentioning, specifically because it was the unanticipated consequences of new technology—and the way the technology was brought to market—that spurred the medical device regulatory framework as we have it today (2011) ( Ref 4...