Skip Nav Destination
Close Modal
Search Results for
face-centered cubic pattern
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 338 Search Results for
face-centered cubic pattern
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 15 December 2019
Fig. 33 Bright-field image and diffraction pattern from a face-centered cubic (fcc) matrix (austenite) containing precipitates having the ordered fcc (L1 2 ) superlattice, Ni 3 (Ti,Al). The fcc spot pattern is indexed in the schematic key, and the superlattice reflections are indicated
More
Image
Published: 15 December 2019
Fig. 25 (a) Real and (b) reciprocal lattices of a face-centered cubic structure. (c) Simulated electron diffraction patterns for a face-centered cubic structure in the [001], [011], [111], and [112] directions
More
Image
Published: 15 December 2019
Fig. 32 Selected-area electron diffraction pattern from a body-centered cubic (bcc)-Fe/face-centered cubic (fcc)-Ni interface showing the Nishiyama-Wassermann orientation relationship. Courtesy of K. Lorcharoensery
More
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... in crystallography. For alloys that contain two or more elements, the placement of the alloying elements in the crystal structure can be random or ordered. Random elemental placements are referred to as solid solutions. For example, pure gold and silver have face-centered cubic (fcc) crystal structures...
Abstract
The crystal structure of a material is an important aspect of corrosion and oxidation processes. This article provides a general introduction to the crystal structure of materials, providing information on the crystal systems, lattice dimensions, nomenclature, and solid-solution mechanisms used to characterize structures. It illustrates the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to the Pearson symbol. The space lattice and crystal system, space-group notation, and prototype for each crystal are also illustrated.
Image
Published: 15 December 2019
Fig. 12 Possible placements of overlayer atoms on a face-centered cubic (100) substrate that produce a c (2 × 2) overlayer unit mesh. The diffraction pattern from these structures differs in the intensities of the diffracted beams but not in the symmetry of the pattern.
More
Image
Published: 01 November 1995
Fig. 6 Plot of intensity vs. twice the angle of incidence, 2θ, to show powder diffraction pattern obtained for face-centered-cubic (fcc) phase magnesium oxide using a copper target and a nickel filter. Acceleration voltage was 50 kV at a current of 20 mA. Numbers in parentheses are Miller
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
... or electrons from a single point should ideally be a single point. However, if light or electrons pass through a round hole or an aperture, the trajectories no longer converge to a single point but are slightly enlarged as concentric rings with a very intense circle at the center, as shown in Fig. 2...
Abstract
Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin specimen. This article discusses fundamentals of the technique, especially for solving materials problems. Background information is provided to help understand basic operations and principles, including instrumentation, the physics of signal generation and detection, image formation, electron diffraction, and spectrometry techniques with data analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
... are identified by capital letters as follows: P for the primitive cubic, C for the cubic cell with lattice points on the two C faces, F for all-face-centered cubic, I for innercentered (body-centered) cubic, and R for primitive rhombohedral. Crystal-Structure Nomenclature When the seven...
Abstract
Crystal structure is the arrangement of atoms or molecules in the solid state that involves consideration of defects, or abnormalities, in idealized atomic/molecular arrangements. The three-dimensional aggregation of unit cells in the crystal forms a space lattice or Bravais lattice. This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide information on the crystal structures and lattice parameters of allotropes of metallic elements.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006655
EISBN: 978-1-62708-213-6
...). It corresponds to a low Miller index plane. For example, (111) and (100) surfaces of face-centered cubic (fcc) crystals and the (110) surface of body-centered cubic crystals are singular. Most surfaces are body-centered cubic (bcc); that is, some atoms in deeper layers also have broken nearest-neighbor bonds...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article provides a brief account of LEED, covering the principles and measurements of diffraction from surfaces. Some of the processes involved in sample preparation are described. In addition, the article discusses the limitations of surface-sensitive electron diffraction and the applications of LEED with examples.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... diffracting planes in the sample, and all face-centered cubic elements and compounds will index successfully. There are other examples of this in other cubic crystal structures. Quality EBSD patterns are critical to obtaining good orientation information and phase discrimination. Many EBSD cameras have...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... a minor role in plastic flow, while stacking faults can affect the work-hardening behavior of metals with close-packed structures (such as face-centered cubic metals). Of course, grain boundaries also play an important role in plastic deformation. Grain boundaries are disruptions between the crystal...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
... ordered β′ phase, equivalent to CuZn, will form on slow cooling. This phase is hard at room temperature and has limited ductility but becomes plastic when it changes to the disordered β phase above 455 °C (850 °F). Unlike face-centered cubic (fcc) copper and hexagonal close-packed (hcp) zinc, the β phases...
Abstract
In some phase diagrams, the appearance of several reactions is the result of the presence of intermediate phases. These are phases whose chemical compositions are intermediate between two pure metals, and whose crystalline structures are different from those of the pure metals. This article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001299
EISBN: 978-1-62708-170-2
... for spallation-type cracks. The thermal cycle for evaluation of thermal shock resistance employs rapid heating and cooling rates, using direct impingement flames or heating jets on the oxide face of the specimen, with little hold time at the maximum temperature. This test principally challenges the oxide layer...
Abstract
This article discusses the various tests applied to a thermal barrier coating system and to the zirconia layer to establish thermomechanical, environmental stability, and thermal design properties such as coefficient of thermal expansion, specific heat, and thermal transport properties. Thermal fatigue testing and the test for evaluating oxidation resistance of the bond coat is also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001758
EISBN: 978-1-62708-178-8
...) Anatase (TiO 2 ), class 4/ mmm. (e) Zircon (ZrSiO 4 ), class 4/ mmm. The three digit codes are the Miller indices, hkl , of the crystal faces. Source: Ref 2 Crystal Diffraction In the optical analog, the one-dimensional grating produced a one-dimensional diffraction pattern. Because...
Abstract
The primary goal of single-crystal x-ray diffraction is to determine crystal structure and the arrangement of atoms in a unit cell. This article discusses the diffraction of light through line gratings and explains the significance of crystal symmetry, space groups, and diffraction intensities. It also addresses phase and crystallographic analysis along with related challenges, and presents several application examples highlighting various experimental techniques.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... compacted graphite EVA ethylene-vinyl acetate co-polymer J solute use CIM computer-integrated manufacturing f fraction JIS Japanese Industrial Standard CLA counter-gravity low-pressure casting of fs solid fraction K Kelvin, curvature FC furnace cool K stress intensity factor air-melted alloys fcc face...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005532
EISBN: 978-1-62708-197-9
..., which means that peaks that are less than approximately 2° apart tend to overlap at high tilt angles and should therefore not be used. For high-symmetry crystal types, such as the cubic metals, the first three reflections are adequate, for example, 111, 200, and 220 for face-cubic centered (fcc...
Abstract
This article discusses the central aspect of anisotropy modeling, namely, texture measurement and analysis. It provides an overview of the methods available for characterizing crystallographic preferred orientation, or texture, in polycrystalline materials. These methods include pole figure measurement and electron backscatter diffraction (EBSD). The article describes the process considerations for pole figure measurement, including X-ray diffraction, neutron diffraction, stereographic projection, equal area projection, graphing pole figures, typical textures, and orientation distribution. It also deals with the limitations and challenges associated with the EBSD, and applications of the diffraction.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003722
EISBN: 978-1-62708-177-1
... Hexagonal Primitive R (b) hP Rhombohedral Primitive R hR Cubic Primitive P cP Face-centered F cF Body-centered I cI (a) The face that has a lattice point at its center may be chosen as the c face (the xy plane), denoted by the symbol C...
Abstract
This article describes crystallographic terms and concepts and illustrates various crystal structures. The crystallographic terms described include crystal structure, unit cell, crystal system, lattice, structure symbols, space-group notation, structure prototype, atom positions, point groups, and equivalent positions. The article presents a table of assorted structure types of metallurgical interest arranged according to the Pearson symbol. It also schematically illustrates atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. The article concludes with a description of some of the most significant crystal defects such as point defects, line defects, and stacking faults.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006292
EISBN: 978-1-62708-163-4
...-centered F oF Body-centered I oI Tetragonal Primitive P tP Body-centered I tI Hexagonal Primitive R (b) hP Rhombohedral Primitive R hR Cubic Primitive P cP Face-centered F cF Body-centered I cI (a) The face...
Abstract
This article defines crystallographic terms and concepts, including crystal structure, unit cell, structure symbols, lattice, space-group notation, and atom position. It schematically illustrates the atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. A table that lists the crystal structures of various metal elements is presented. The crystal structures are described by the Pearson symbols for crystal system, space lattice, total number of atoms per unit cell, and prototype structure. The article tabulates the assorted structure types of metallurgical interest arranged according to Pearson symbol. It also provides information on crystal defects, explaining some significant ones, such as point defects, line defects, stacking faults, and twins.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
... crystal structures of the metallic elements ( Fig. 2 ) are face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal close-packed (hcp). Fig. 1 The periodic table of elements. F, face-centered cubic; B, body-centered cubic; H, hexagonal; O, orthorhombic; T, tetragonal; R, rhombohedral; M...
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001769
EISBN: 978-1-62708-178-8
... coordination number). It corresponds to a low Miller index plane. For example, (111) and (100) surfaces of face-centered cubic (fcc) crystals and the (110) surface of body-centered cubic (bcc) crystals are singular. Most surfaces are vicinal; that is, some atoms in deeper layers also have broken nearest...
Abstract
Low-energy electron diffraction (LEED) is a technique for investigating the crystallography of surfaces and overlayers adsorbed on surfaces. This article describes the principles of diffraction from surfaces, and elucidates the method of sample preparation to achieve diffraction patterns. The article describes the limitations of surface sensitive electron diffraction and discusses the applications of LEED with examples.