Skip Nav Destination
Close Modal
Search Results for
external honing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 80 Search Results for
external honing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002153
EISBN: 978-1-62708-188-7
..., bore shape, and stock removal. It illustrates the uses of air, ring, expanding, plug, and bar gages for automatic size control in power stroking of honing tools. The article provides a short description of various honing processes, such as external honing, gear tooth honing, plateau honing, flat honing...
Abstract
Honing serves an important purpose of generating specified functional characteristics for surfaces besides removing stock and involves the correction of errors resulting from previous machining operations. This article discusses the process capabilities of honing in terms of bore size, bore shape, and stock removal. It illustrates the uses of air, ring, expanding, plug, and bar gages for automatic size control in power stroking of honing tools. The article provides a short description of various honing processes, such as external honing, gear tooth honing, plateau honing, flat honing, electrochemical honing, and hone forming. It also examines various process parameters in microhoning and concludes with information on the applications of microhoning.
Image
Published: 01 January 1989
Fig. 25 Fixtured honing of grooves on external surface of bearing rings with simultaneous oscillation of honing stone and rotation of workpiece
More
Image
Published: 01 January 1994
Fig. 11 Applications of high-precision processes using bonded abrasives. (a) Honing is most commonly used to correct the internal geometry of a bore hole. (b) Superfinishing is most commonly used to improve external surface finish. (c) Flat honing is most commonly used to improve flatness
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003214
EISBN: 978-1-62708-199-3
... to 0.20 μm (32 to 8 μin.) R a (roughness average) are produced by honing. The most common application of honing is on internal cylindrical surfaces ( Fig. 1 a). However, honing is also used to generate functional characteristics on external cylindrical surfaces, flat surfaces, truncated spherical...
Abstract
Finishing refers to a wide variety of processes that generally involve material removal in one form or another to generate surfaces with specific geometries, tolerances, and functional or decorative characteristics. This article discusses four major finishing methods, namely, abrasive machining, electropolishing, mass finishing, and shot peening. In each case, it describes subtypes, process variations, and the associated equipment.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... of high-precision processes using bonded abrasives. (a) Honing is most commonly used to correct the internal geometry of a bore hole. (b) Superfinishing is most commonly used to improve external surface finish. (c) Flat honing is most commonly used to improve flatness and the parallelism between surfaces...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005114
EISBN: 978-1-62708-186-3
.... Abrasive wear is the result of the frictional forces developed during the relative movement of the two members. It is extremely significant to note that friction cannot be present unless the two surfaces are forced together by the application of an external load. In effect, the conventional post...
Abstract
This article briefly describes the nomenclature, alignment and geometrical considerations, and functional and application requirements of a die set. The die set consists of the shank, guide posts, guide bushings, the punch, and die holders. The article illustrates plate flatness and parallelism in the die set. The testing for abrasion, seizure, and endurance in the die set are discussed briefly. The article concludes with information on die-set recommendations.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002138
EISBN: 978-1-62708-188-7
..., such as internal tool, external tool, and tools for the roller burnishing of tapered holes and circular flat surfaces. The article contains a table that lists typical inside and outside diameter speed and feed rates for roller burnishing tools. It exemplifies typical lubrication techniques and the conditions used...
Abstract
Roller burnishing is a method of working a metal surface to improve its finish and dimensional accuracy and can provide some degree of work hardening. This article discusses the workpiece requirements used for roller burnishing. It illustrates the types of roller burnishing tools, such as internal tool, external tool, and tools for the roller burnishing of tapered holes and circular flat surfaces. The article contains a table that lists typical inside and outside diameter speed and feed rates for roller burnishing tools. It exemplifies typical lubrication techniques and the conditions used in the roller burnishing of magnesium alloy castings. The article reviews fillet rolling that is used to improve fatigue resistance of the materials. It concludes with a discussion on the process considerations for three basic types of bearingizing tools for the finishing of bores: bottoming, semi-bottoming, and through-hole.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003096
EISBN: 978-1-62708-199-3
... different basic dimensions; all are termed pipe. On a use basis, pressure pipe is distinguished from pressure tubes in that the latter are suitable for those applications in which heat is applied externally. The principal use groups and types of pressure tubes are shown in Table 2 . Principal uses...
Abstract
This article discusses the classifications, specifications, applications and methods for producing welded and seamless steel tubular products, including pipes and tubes. Common types of pipes include standard pipe, conduit pipe, piling pipe, pipe for nipples, transmission or line pipe, water main pipe, oil country tubular goods, water well pipe, and pressure pipe. Pipes in suitable sizes, and most of the products classified as tubing, both seamless and welded, may be cold finished. Pressure tubes are given a separate classification by both the American Society for Testing and Materials (ASTM) and producers. The term tube covers three groups, including pressure tubes, structural tubing, and mechanical tubing.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
... in the finishing operations. With proper technique, however, finishes of 0.10 to 0.20 μm (4 to 8 μin.) and finer can be obtained by grinding, honing, and lapping. It may not always be possible to produce these finishes on Monel R-405, because this alloy is likely to have sulfide and graphite inclusions...
Abstract
Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics. The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes nontraditional machining methods that are suitable for shaping high-temperature, high-strength nickel alloys. These include electrochemical machining, electron beam machining, and laser beam machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
... (see the articles “Lapping” and “Honing” in this Section) or cutting applications ranging from the rough cutting of stone and concrete to the ultra-precision machining of electronic ceramics. Additional applications for diamond and cubic boron nitride are discussed in the article “Ultrahard Tool...
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
..., broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses. aluminum aluminum alloys boring broaching cutting force grinding high-silicon aluminum alloys...
Abstract
This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article discusses distortion and dimensional variation and machining problems during the machining of high-silicon aluminum alloy. It also provides information on tool design and material, speed and feed, and the cutting fluid used for various machining processes, namely, turning, boring, planing and shaping, broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003189
EISBN: 978-1-62708-199-3
... or by oilcan to the tool or workpiece in operations such as tapping and hand reaming. Grinding wheels are sometimes impregnated with solids possessing lubricating qualities. In special cases, such as knife grinding, wheels are treated with sulfur to produce a cooler action in wet grinding. Also, external...
Abstract
Cutting fluids play a major role in increasing productivity and reducing costs by making possible the use of higher cutting speeds, higher feed rates, and greater depths of cut. After listing the functions of cutting fluids, this article then covers the major types, characteristics, advantages and limitations of cutting and grinding fluids, such as cutting oils, water-miscible fluids, gaseous fluids, pastes, and solid lubricants along with their subtypes. It discusses the factors considered during the selection of cutting fluid, focusing on machinability (or grindability) of the material, compatibility (metallurgical, chemical, and human), and acceptability (fluid properties, reliability, and stability). The article also describes various application methods of cutting fluids and precautions that should be observed by the operator.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002185
EISBN: 978-1-62708-188-7
... hacksawing, grinding, and honing. circular sawing copper copper alloys drilling grinding honing machinability machining metal cutting fluids milling planing power band sawing power hacksawing reaming slitting tapping threading turning COPPER and copper alloys can be divided...
Abstract
This article begins with a discussion on machinability ratings of copper and copper alloys and then describes the factors influencing the machinability ratings. It explains the effect of alloying elements, cold working, and cutting fluid on the machinability of copper and copper alloys. In addition, the article provides a comprehensive discussion on various machining techniques that are employed for machining of copper and copper alloys: turning, planing, drilling, reaming, tapping and threading, multiple operation machining, milling, slitting and circular sawing, power band sawing and power hacksawing, grinding, and honing.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
... Mass finishing Shot peening Honing and lapping Abrasive flow machining Polishing, Buffing, and Brushing Polishing is the mechanical finishing of a product using abrasives which are firmly adhered to a flexible backing, such as with an abrasive belt or with abrasives bonded...
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002133
EISBN: 978-1-62708-188-7
...) (a) Honing of cutting edges proved beneficial. Optimum cutting efficiency was obtained by keeping edge wear below 0.25 mm (0.010 in.) wear land. (b) Applied by a brush Cutting Fluids A flood of cutting fluid is seldom used for shaping operations, because two of the three functions of cutting...
Abstract
Shaping and slotting are used to remove metal from surfaces through the use of a single-point tool supported by a ram that reciprocates the tool in a linear motion against the workpiece. This article discusses the process capabilities of shaping and slotting with respect to the size and configuration of the workpiece. Shaping and slotting machines develop cutting action from a straight-line reciprocating motion between the tool and the workpiece. The article describes the types of shapers such as horizontal shaper and vertical shaper. It briefly discusses the applications of high-speed steel tools and carbide tools for shaping. The article also illustrates the dimensional control of workpieces during shaping. It concludes with a discussion on gear shaping.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
Abstract
The term cast iron designates a group of materials that contain more than one constituent in their microstructure due to excess carbon that result in unique characteristics such as the fracture appearance and graphite morphology. This article discusses the classification of cast iron and the various metallurgical aspects, such as the composition, alloying element, solidification, and graphite morphologies, of different types of cast iron. It describes the physical properties for various cast irons and the influence of microstructure and chemical composition on each property. The article provides a detailed account on thermal properties, conductive properties, magnetic properties, and acoustic properties of cast iron. It also examines heat treatment, namely, stress relieving, annealing, normalizing, through hardening, and surface hardening. The article presents a discussion on the welding, machining and grinding, and coating of the types of cast iron.
Book
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.9781627081702
EISBN: 978-1-62708-170-2
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005585
EISBN: 978-1-62708-170-2
... against and moved along a solid surface. (2) A roughening or scratching of a surface due to abrasive wear. (3) The process of grinding or wearing away a surface through the use of abrasives. abrasive. (1) A hard substance used for grinding, honing, lapping, superfinishing, polishing, pressure blasting...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002145
EISBN: 978-1-62708-188-7
... because the center distance between the internal gear and its mating pinion is much smaller than that required for two external gears. A typical relation between an internal gear and a mating pinion is shown in Fig. 8 . Fig. 8 Section of a spur-type internal gear (a) and relation of internal gear...
Abstract
This article discusses the different classes of gears, namely, spur, helical, herringbone, crossed-axes helical, worm, internal, rack, bevel, or face-type. It describes the methods used to cut the teeth of gears other than bevel gears: milling, broaching, shear cutting, hobbing, shaping, and rack cutting. The article also reviews the methods that are used to cut the teeth of bevel gears, such as face mill cutting, face hob cutting, formate cutting, helix form cutting, the Cyclex method, and template machining. The machining methods best suited to specific conditions are discussed. The article presents the factors influencing the choice of cutting speed and cutting fluids. It outlines two basic methods for the grinding of gear teeth: form grinding and generation grinding. The article concludes with information on the gear inspection techniques used to determine whether the resulting product meets design specifications and requirements.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005740
EISBN: 978-1-62708-171-9
... of the aluminum cylinder bore better than a cast-in cast iron liner, and circularity is high. Therefore, it becomes possible to set the piston ring tension low and to reduce frictional resistance. A smooth honed thermal-sprayed coating surface, without a honed oil slot, can reduce frictional resistance without...
Abstract
This article describes the benefits that can be achieved by using thermal spray on particular engine parts of an automobile. These include improvement in fuel consumption, wear resistance and bonding, and reduction of oil consumption, exhaust heat loss, and cooling heat loss. Typical engine parts are cylinder blocks, cylinder bores, cast iron cylinder liners, piston rings, connecting rod bearings, turbochargers, engine valve lifters, exhaust system parts, and oxygen sensors. The article also describes the benefits of using thermal spray on transmission parts such as synchronizer rings and torque converters.
1