Skip Nav Destination
Close Modal
By
ASM Committee on Threaded Steel Fasteners, Frank W. Akstens, James Gialamas, Edward J. Bueche, T.P. Madvad ...
Search Results for
external bolting corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 280 Search Results for
external bolting corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors. low-strength austenitic stainless steels corrosion fouling intergranular corrosion intergranular stress corrosion cracking nickel-base alloys high-strength nickel-base alloys nuclear power...
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001018
EISBN: 978-1-62708-161-0
... protective metal coatings for ferrous metal fasteners; zinc, cadmium, and aluminum; are described as well. bolt steels clamping force corrosion protection fastener performance failure modes grade designations proof stress stud steels threaded fasteners wedge tensile test THREADED...
Abstract
This article discusses the properties of threaded fasteners made from carbon and low-alloy steels containing a maximum of 0.55% carbon. It provides guidelines for the selection of steels for bolts, studs, and nuts intended for use at temperatures between -50 and 370 deg C. The article also discusses steels rated for service above 370 deg C and describes internationally recognized grade designations. The specifications provided can be used to outline fastener requirements, control manufacturing processes, and establish functional or performance standards. The most commonly used protective metal coatings for ferrous metal fasteners; zinc, cadmium, and aluminum; are described as well.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... or cold forging, depending on the type of material and size of the bolt. In addition to being a relatively low-cost manufacturing method, forging provides smooth, unbroken metal flow through the head-to-shank fillet, which closely follows the external contour of the bolt ( Fig. 5 ) and thus minimizes...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006501
EISBN: 978-1-62708-207-5
... with acceptable SCC resistance. Pin and collar fasteners, commonly known by various tradenames such as Hi-Lok and Hi-Lite (Hi-Shear Corporation) or Aero-Lite and Eddie-Bolt 2 (Arconic Inc.), consist of two pieces: an externally threaded pin with an internal drive recess and an internally threaded collar...
Abstract
This article compares and contrasts mechanical joining techniques used in the manufacture of aluminum assemblies, including seaming, swaging, flanging, crimping, clinching, dimpling, interference and snap fits, and interlocking joints. It provides basic illustrations of the various methods and summarizes the advantages and disadvantages of each. The article also discusses the use of staples, nails, rivets, and threaded fasteners and provides relevant property and performance data.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003969
EISBN: 978-1-62708-183-2
... the steel to corrode. Control: Use a galvanized fastener when the system requires it. Improve awareness and inspection. Corrosion form and mechanism Atmospheric corrosion, materials selection Material Galvanized steel Product form Bolted support Fig. 18 Rust stains on what...
Abstract
This article is a pictorial guide to forms of corrosion that draws attention to common pitfalls or situations that have caused premature corrosion, sometimes with expensive consequences. The examples used are not exhaustive; they highlight the necessity to fully examine materials, conditions, and specific circumstances that together can reduce the anticipated service life of a component or plant. The color images in this article are categorized according to the type of corrosion following the general order that is adopted in Volume 13A of ASM Handbook. The first table of the article provides a categorization of the forms of corrosion. It also provides a reference to articles or sections of articles in Volume 13A that detail the particular corrosion form or mechanism. The second table is a guide listing the figures in this article by material and by the corrosion form or mechanism illustrated.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004138
EISBN: 978-1-62708-184-9
... available to wipe down firearms after use, offering yet another barrier to moisture. Far more destructive than external surface rust is corrosion in the barrel bore. For hundreds of years the only propellant available for use in firearms was black powder. The residue left after firing is so hygroscopic...
Abstract
The recreation industry covers a huge number of sports, games, and activities that take place in environments as diverse as the activities themselves. This article addresses the corrosive attack on recreational equipment, such as recreational boats, firearms, bicycles, playground equipment, and climbing gear. It discusses the procedures for base materials selection, surface treatments and coatings, and good practice of maintenance to mitigate corrosion while addressing other functional issues for a given piece of equipment.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006845
EISBN: 978-1-62708-387-4
... an acid pickling process. Final fracture was by ductile shear, as indicated by the roughly 45° angle of the fracture at the right side of the bolt as photographed. White deposits in the threads are zinc corrosion products and suggest a corrosive service environment. Corrosion is another source of hydrogen...
Abstract
Fracture surfaces can provide an important and indispensable record of many factors in simple or complex failures. Visual examination of fracture surfaces can reveal the type and direction of loading, with fracture-surface features often providing definitive evidence of torsion, tension, bending, and compressive loads. This article discusses tools and techniques of visual examination and characteristic features of fracture features. A brief review of ductile and brittle fracture-surface features is provided. The article also describes macroscopic features that can be used to identify fracture-initiation sites, locations of final overload, and the directions of crack propagation. In addition, the use of these features to characterize loading at the time of failure is also described.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003323
EISBN: 978-1-62708-176-4
... coefficient testing, torque tension testing, locknut testing, and angular ductility and rotational capacity tests. The article reviews the basic methods and fundamental principles for mechanical testing of externally and internally threaded fasteners and bolted joints. The test methods for externally threaded...
Abstract
This article provides an overview of the relationships between torque, angle-of-turn, tension, and friction and explains how they are measured and evaluated. It focuses on the principle, test equipment, procedure, evaluation, and test report of various testing methods, namely, friction coefficient testing, torque tension testing, locknut testing, and angular ductility and rotational capacity tests. The article reviews the basic methods and fundamental principles for mechanical testing of externally and internally threaded fasteners and bolted joints. The test methods for externally threaded fasteners include product hardness, proof load, axial and wedge tension testing of full-sized products, tension testing of machined test specimens, and total extension at fracture testing. Product hardness, proof load, and cone proof-load test are the test methods for internally threaded fasteners. The article concludes with a description of torque-angle signature analysis and the specification of measurement accuracy for torque and clamp force.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004139
EISBN: 978-1-62708-184-9
... these conditions, but they are expensive. Silicon bronze is preferred, and galvanized steel is still being used. Galvanized bolts and drifts are commonly found in the most demanding of the below-the-waterline applications: bilge fastenings, floor bolts, and keel bolts. The most corrosive damage occurs...
Abstract
This article focuses on the corrosion and deterioration of components on recreational and small workboats. It discusses the materials selection and corrosion control for the components. These components include hulls, fittings, fasteners, metal deck gear, winches, backing plates, lifeline supports, inboard engines, cooling systems, propulsion systems, electrical and electronic systems, plumbing systems, masts, spars, and rigging.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002368
EISBN: 978-1-62708-193-1
... at the bearing face of the nut-bolt, where maximum stress concentration occurs. For example, the stress concentration factor at the bearing face of the nut can be reduced from 3.4 to 2.5 by using an aluminum, rather than a steel, nut on a steel bolt ( Ref 12 ). [Note: A galvanic action may occur in corrosive...
Abstract
This article discusses the effect of thread design, preload, tightening, and mean stress on the fatigue strength of bolt steel. It describes the factors influencing fatigue failures in cold-driven and hot-driven riveted joints. The factors affecting the fatigue resistance of bolted friction joints are also discussed. The article reviews stress concentrations in pin joints and discusses stress-intensity factors for mechanically fastened joints.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... strict limitations on the critical impurities nickel, iron, and copper, as well as on the iron-to-manganese ratio. These improvements have no significant effect on galvanic corrosion, because the electromotive force (emf) for corrosion now comes from an external source, the dissimilar metal coupled...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... fretting are given for these common examples. When frettting occurs, it often cannot be eliminated but can be reduced in severity. Parallel Contact with External Loading (Fastened Joints) Bolted flanges in pipe systems are common locations for fretting fatigue. Cracks can occur in the plate either...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions for fretting fatigue. It presents the types of fretting fatigue tests and the effect of variables on fretting fatigue from different research test programs. The article also lists the general principles and practical methods for the abatement or elimination of fretting fatigue.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... strands, or a sphere or a cylinder in a bearing race Specific remedies to reduce fretting are given for these common examples. When frettting occurs, it often cannot be eliminated but can be reduced in severity. Parallel Contact with External Loading (Fastened Joints) Bolted flanges in pipe...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies, are reviewed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003458
EISBN: 978-1-62708-195-5
... the following in its design phase: Fatigue loading of the structure and its effects on bolted and bonded joints, damage growth, and monitoring for airworthiness Corrosion of components where dissimilar materials have been used in the repair and maintenance of corrosion protection precautions...
Abstract
This article discusses three typical repair types for composite structures: temporary repairs, adhesively bonded repairs, and bolted repairs. It contains a table that lists general design requirements and considerations for the repair of composite structures. The article describes ten steps for an engineering repair approach to effectively restore structural integrity to damaged composite components. Management, validation and certification of repairs are also discussed. The article presents the design guidelines for analyzing the damage and possible strategies for making a repair. It reviews three repair schemes used in repair design analysis, namely, core replacement, adhesively bonded patch, and mechanically fastened patch. The article also emphasizes the various pitfalls and problems in repair design for composite structures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... describes what damage is present. Damage mechanism: The specific series of events that describe both how the damage was incurred and the resulting consequences. Examples of damage mechanisms include high-temperature creep, hydrogen embrittlement, stress-corrosion cracking, and sulfidation. Damage...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
... ( Fig. 6 ), or external, as in the 777 ( Fig. 7 ). Figure 7 shows how susceptibility to corrosion increases once the pure aluminum cladding is removed. Steels and Other Metallic Materials During the late 1960s to early 1970s, multiple failures in service of H-11 alloy steel bolts by stress...
Abstract
This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting. It discusses the factors influencing airplane corrosion from the manufacturing perspective: design, manufacturing, and service-related factors. The article explains the collection of corrosion data and provides an overview of the implementation and evolution of airline corrosion prevention and control programs and directions being considered in the design for corrosion prevention of airplanes.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
...-corrosion cracking (IASCC). Initially, the affected components have been either relatively small (bolts, springs, etc.) or designed for replacement (fuel rods, control blades, or instrumentation tubes). In the last decade, there have been many more structural components (PWR baffle bolts and BWR core...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... singularly complicated items is significant. Additionally, the knowledge that is required spans many different disciplines. These disciplines, in the case of aircraft, can include aerodynamics, fluid flow, mechanics, mechanisms, structures, metallurgy, materials science, corrosion, inspection methods...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
..., and the tensile stresses must be above some threshold value. The tensile stress may be residual stress resulting from heat treatment or fabrication of the metal, may be developed by external loading, or may be a combination of these conditions. Stress-corrosion cracking occurs under service conditions, which...
Abstract
Stress-corrosion cracking (SCC) occurs under service conditions, which can result, often without any prior warning, in catastrophic failure. Hydrogen embrittlement is distinguished from stress-corrosion cracking generally by the interactions of the specimens with applied currents. To determine the susceptibility of alloys to SCC and hydrogen embrittlement, several types of testing are available. This article describes the constant extension testing, constant load testing, constant strain-rate testing for smooth specimens and precracked or notched specimens of SCC. It provides information on the cantilever beam test, wedge-opening load test, contoured double-cantilever beam test, three-point and four-point bend tests, rising step-load test, disk-pressure test, slow strain-rate tensile test, and potentiostatic slow strain-rate tensile test for hydrogen embrittlement.
1