Skip Nav Destination
Close Modal
Search Results for
explosive forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 466 Search Results for
explosive forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1989
Fig. 19 Setup for deep-hole drilling an explosive forming die in a boring mill. Dimensions given in inches
More
Image
Published: 01 January 2006
Fig. 9 Explosive forming of a case from 1.5 mm (0.060 in.) thick alloy A-286 sheet. Dimensions given in inches
More
Image
Published: 01 January 2006
Fig. 12 Alloy N-155 exit nozzle produced by tube spinning and explosive forming. Dimensions given in inches
More
Image
Published: 01 January 2006
Fig. 7 Schematic examples of typical explosive forming operations. (a) Sizing with a water-filled die cavity. (b) Method for forming a flat panel. (c) Use of detonation cord to prescribe the pressure distribution in an open forming system. (d) Use of detonation cord to form a cylinder. Open
More
Image
Published: 01 January 2006
Fig. 17 Curved, corrugated panel produced by explosive forming from aluminum alloy 2014 0.51 mm (0.020 in.) thick. Dimensions given in inches
More
Image
Published: 01 December 1998
Image
Published: 01 December 1998
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
..., such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology. electrohydraulic forming electromagnetic...
Abstract
This article emphasizes the traits that are common to high-velocity forming operations. It describes general principles on how metal forming is accomplished and analyzed when inertial forces are large. The article discusses the principal methods of high-velocity forming, such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
... techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming. age-hardenable alloys bending blanking cobalt alloys cold forming deep drawing explosive...
Abstract
This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005141
EISBN: 978-1-62708-186-3
... used in the forming. It also analyzes the various forming processes of aluminum alloys. The processes include blanking and piercing, bending, press-brake forming, contour roll forming, deep drawing, spinning, stretch forming, rubber-pad forming, warm forming, superplastic forming, explosive forming...
Abstract
This article discusses the general formability considerations of aluminum alloys. To conduct a complete analysis of a formed part, the required mechanical properties, as determined by several standard tests, must be considered. The article describes tension testing and other tests designed to simulate various production forming processes, including cup tests and bend tests, which help in determining these properties. It provides information on the equipment and tools, which are used in the forming of aluminum alloys. The article presents a list of lubricants that are most widely used in the forming. It also analyzes the various forming processes of aluminum alloys. The processes include blanking and piercing, bending, press-brake forming, contour roll forming, deep drawing, spinning, stretch forming, rubber-pad forming, warm forming, superplastic forming, explosive forming, electrohydraulic forming, electromagnetic forming, hydraulic forming, shot peening, and drop hammer forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
..., rubber-pad forming, stretch forming, contour roll forming, creep forming, vacuum forming, drop hammer forming, joggling, and explosive forming. alpha alloys alpha-beta alloys Bauschinger effect cold forming contour roll forming creep forming diffusion bonding drop hammer forming explosive...
Abstract
This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning, rubber-pad forming, stretch forming, contour roll forming, creep forming, vacuum forming, drop hammer forming, joggling, and explosive forming.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... forming, explosive forming, electromagnetic forming, and superplastic forming. auxiliary equipment blanking contour roll forming deep drawing die materials drop hammer forming electromagnetic forming explosive forming fine-edge blanking forming by multiple-slide machines forming machines...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Image
Published: 01 January 2006
Fig. 18 Aluminum alloy 6061 instrument container fabricated from a blank by explosive forming. Courtesy of Explosive Fabricators, Inc.
More
Image
Published: 01 January 2006
Fig. 1 Example of (a) free forming and (b) die forming as accomplished with explosive forming. Source: Ref 2
More
Image
Published: 01 January 2006
Fig. 10 Alloy 718 flame deflector formed from sheet 1.8 mm (0.072 in.) thick by explosive forming in three successive charges. Dimensions given in inches
More
Image
Published: 01 January 2006
Fig. 11 Alloy 25 welded cylinder (sheet thickness, 1.7 mm, or 0.066 in.) in position for explosive forming. Dimensions given in inches
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001449
EISBN: 978-1-62708-173-3
.... This type of approach to setting and controlling process parameters is particularly important when explosion welding dissimilar or metallurgically incompatible metals. Metallurgically incompatible combinations, such as titanium and steel, aluminum and steel, and zirconium and steel, will form brittle...
Abstract
Explosion welding (EXW), like all other welding or joining processes, has a well defined set of input parameters or conditions that must fall within certain limits for the desired weld quality to be achieved. This article provides an overview of the important mechanistic aspects of EXW, the process-material interactions, and the critical aspects or parameters that must be controlled. The commercially used metals and alloys that can be joined with EXW are listed in a table. The article concludes with a discussion on parametric limits for EXW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005602
EISBN: 978-1-62708-174-0
.... Metallurgically incompatible combinations, such as titanium and steel, aluminum and steel, and zirconium and steel, will form brittle intermetallic compounds at the explosion weld interface if excessive energies are used during welding. The intermetallic compounds result in poor-quality welds. Setting...
Abstract
This article provides an overview of the important mechanistic aspects of explosion welding (EXW), the process-material interactions, and the critical aspects or parameters that must be controlled. The procedure for ensuring the control of process parameters is also discussed. The article explains the primary variables used to predict EXW parameters and the characteristics of the explosion weld. It concludes with a description of the manufacturing process and practice, and applications of the EXW.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001376
EISBN: 978-1-62708-173-3
... steel are welded to the respective ends using conventional fusion-welding processes. Transition joint components are produced by explosion welders at their production facilities and then provided in the form of blocks, strips, or tubular couplings to equipment fabricators for use...
Abstract
Explosion welding (EXW) is a solid-state metal-joining process that uses explosive force to create an electron-sharing metallurgical bond between two metal components. This article discusses the process attributes of EXW, including metallurgical attributes, metal combinations, size limitations, configuration limitations, and bond zone morphology. It provides an overview of the common industrial applications and shop welding applications of EXW products. The article reviews different safety standards and regulations, such as noise and vibration abatement and process geometry. It concludes with a section on the EXW process sequence for welding a two-component flat plate product.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006544
EISBN: 978-1-62708-290-7
... be handled in many forms, applications, and industries, including automotive, specialty chemicals/catalysts, paints/coatings, medical, jewelry, explosives, and the rapidly growing technology of additive manufacturing, or three-dimensional (3D) printing. During metal powder production, powder and/or dust...
Abstract
During metal powder production, powder and/or dust handling, compaction, and part finishing operations, many safety and environmental risks exist. This article is a detailed account of the types of safety hazards that can exist and the issues that occur during metal powder handling, as well as recommendations and strategies that can be employed to both prevent and protect against damaging effects from powder exposure, fire and/or explosions, or environmental impact events.
1