Skip Nav Destination
Close Modal
Search Results for
explosion welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 319 Search Results for
explosion welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005602
EISBN: 978-1-62708-174-0
... Abstract This article provides an overview of the important mechanistic aspects of explosion welding (EXW), the process-material interactions, and the critical aspects or parameters that must be controlled. The procedure for ensuring the control of process parameters is also discussed...
Abstract
This article provides an overview of the important mechanistic aspects of explosion welding (EXW), the process-material interactions, and the critical aspects or parameters that must be controlled. The procedure for ensuring the control of process parameters is also discussed. The article explains the primary variables used to predict EXW parameters and the characteristics of the explosion weld. It concludes with a description of the manufacturing process and practice, and applications of the EXW.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001376
EISBN: 978-1-62708-173-3
... Abstract Explosion welding (EXW) is a solid-state metal-joining process that uses explosive force to create an electron-sharing metallurgical bond between two metal components. This article discusses the process attributes of EXW, including metallurgical attributes, metal combinations, size...
Abstract
Explosion welding (EXW) is a solid-state metal-joining process that uses explosive force to create an electron-sharing metallurgical bond between two metal components. This article discusses the process attributes of EXW, including metallurgical attributes, metal combinations, size limitations, configuration limitations, and bond zone morphology. It provides an overview of the common industrial applications and shop welding applications of EXW products. The article reviews different safety standards and regulations, such as noise and vibration abatement and process geometry. It concludes with a section on the EXW process sequence for welding a two-component flat plate product.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
... Abstract Explosion welding (EXW), also known as explosive bonding, is accomplished by a high-velocity oblique impact between two metals. This article describes the practice of producing an explosive bond/weld and draws on many previous research results in order to explain the mechanisms...
Abstract
Explosion welding (EXW), also known as explosive bonding, is accomplished by a high-velocity oblique impact between two metals. This article describes the practice of producing an explosive bond/weld and draws on many previous research results in order to explain the mechanisms involved. It provides a schematic illustration of the arrangement used in the parallel gap explosive bonding process. The article discusses several important concepts pertaining to explosive parameters, hydrodynamic flow, jetting, and metal properties. It summarizes the criteria used to model the explosive bonding process. The article describes bond morphology in terms of wave formation, bond microstructure, and bond strength determination.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001449
EISBN: 978-1-62708-173-3
... Abstract Explosion welding (EXW), like all other welding or joining processes, has a well defined set of input parameters or conditions that must fall within certain limits for the desired weld quality to be achieved. This article provides an overview of the important mechanistic aspects of EXW...
Abstract
Explosion welding (EXW), like all other welding or joining processes, has a well defined set of input parameters or conditions that must fall within certain limits for the desired weld quality to be achieved. This article provides an overview of the important mechanistic aspects of EXW, the process-material interactions, and the critical aspects or parameters that must be controlled. The commercially used metals and alloys that can be joined with EXW are listed in a table. The article concludes with a discussion on parametric limits for EXW.
Image
Published: 01 January 1993
Fig. 6 Parallel-plate explosion welding process. (a) Explosion-cladding assembly before detonation. (b) Explosion-cladding assembly during detonation. (c) Close-up of (b) showing mechanism for jetting away the surface layer from the parent layer
More
Image
Published: 31 October 2011
Fig. 18 Schematic illustration of the explosion welding process showing (a) the typical component arrangement and (b) the characteristic action between components during welding. Source: Ref 5
More
Image
Published: 31 October 2011
Fig. 2 Schematic showing mechanics of explosion welding. (a) Alignment of components to be joined before detonation. (b) Motion of components at detonation. (c) Close-up view of jet and wavy interface characteristic of explosion welding process
More
Image
Published: 31 October 2011
Fig. 6 Explosion welding interface exhibits patterns similar to flowing fluid, even though metals remain as solids. Right side shows explosion welding interface patterns; left side shows pattern of fluid flow around a pin. Velocity increases from top to bottom in both cases.
More
Image
Published: 31 October 2011
Fig. 11 Test specimens of explosion welding interface showing ductile failure in the parent steel. (a) Shear strength test. (b) Tensile strength test
More
Image
Published: 01 January 1993
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... Abstract This article is a compilation of definitions for terms related to welding fundamentals and all welding processes. The processes include arc and resistance welding, friction stir welding, laser beam welding, explosive welding, and ultrasonic welding. arc welding explosive welding...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
... Abstract This article describes the mechanism, advantages and disadvantages, fundamentals, capabilities, variations, equipment used, and weldability of metals in solid-state welding processes, including diffusion bonding, explosion welding, friction welding, ultrasonic welding, upset welding...
Abstract
This article describes the mechanism, advantages and disadvantages, fundamentals, capabilities, variations, equipment used, and weldability of metals in solid-state welding processes, including diffusion bonding, explosion welding, friction welding, ultrasonic welding, upset welding, and deformation welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
..., namely, gas-tungsten arc welding, gas-metal arc welding, electron-beam and laser-beam welding, resistance welding, furnace brazing, friction welding, and explosion welding. alumina electron-beam welding explosion welding friction welding furnace brazing gas-metal arc welding gas-tungsten arc...
Abstract
Oxide - dispersion - strengthened (ODS) materials utilize extremely fine oxide dispersion for strengthening, such as nickel-base alloys or alumina. The processing techniques employed in the production of ODS alloys produce some entrapped gases, which tend to create porosity during welding that can be rectified by suitable designing considerations. This article discusses certain successful design strategies employed in joining ODS alloys in consideration with the grain structure. It further provides a brief discussion on different welding processes involved in joining ODS materials, namely, gas-tungsten arc welding, gas-metal arc welding, electron-beam and laser-beam welding, resistance welding, furnace brazing, friction welding, and explosion welding.
Image
Published: 31 October 2011
Fig. 7 Plot of collision angle versus collision velocity to obtain a typical explosion welding process parametric envelope for both similar- and dissimilar-metal combinations. See text for details.
More
Image
Published: 01 January 1993
Fig. 5 Failure in copper-to-stainless steel tensile specimen that was explosion welded. (a) Photomicrograph of failed specimen showing wavy bond line and ductile fracture in parent copper metal. 16×. (b) Scanning electron fractograph of copper fracture showing dimpled appearance of typical
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005595
EISBN: 978-1-62708-174-0
... have been developed, with explosive welding being the most studied. Solid-state welds require clean surfaces; in explosive welding, the impact of the materials achieves this by removing the surface oxide layers. Explosive welding is well suited for welding dissimilar and difficult-to-weld metals...
Abstract
This article describes the fundamental theory of magnetic pulse welding (MPW). It reviews the equipment used for MPW, namely, work coil, capacitor bank, high-voltage power supply, high-voltage switches, and field shapers. The article discusses the MPW process and explains the critical parameters needed to obtain acceptable welds. Applications and safety guidelines of the MPW are also presented.
Image
Published: 01 January 1993
Fig. 3 Aluminum-to-stainless weld accomplished with an explosion-bonded tubular transition joint. Aluminum and stainless steel are welded to the respective ends using conventional fusion-welding processes.
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and explosion. adhesive bonding arc welding brazing compressed gas cutting electrical safety electromagnetic radiation electron beam welding explosion prevention explosion protection explosion welding fire prevention fire protection friction welding fumes gas high-frequency welding laser...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
... and the workpiece. When very high velocities or pressures are needed, the explosive may be placed directly (or with a thin protective layer) on the workpiece. This is classified as a contact operation. One of the more common contact operations is in the explosive cladding of materials via solid-state impact welding...
Abstract
This article emphasizes the traits that are common to high-velocity forming operations. It describes general principles on how metal forming is accomplished and analyzed when inertial forces are large. The article discusses the principal methods of high-velocity forming, such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... process: electrical shock, fumes and gases, arc radiation, and fire and explosion. arc radiation automatic welding electrical shock filler metals fire and explosion fumes gas tungsten arc welding power supplies robotic welding safety precautions shielding gas torch construction tungsten...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
1