1-20 of 355 Search Results for

explosion protection

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006544
EISBN: 978-1-62708-290-7
..., as well as recommendations and strategies that can be employed to both prevent and protect against damaging effects from powder exposure, fire and/or explosions, or environmental impact events. dust hazards analysis metal powder handling metal powder hazards safety METAL POWDERS can...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and explosion. adhesive bonding arc welding brazing compressed gas cutting electrical safety electromagnetic radiation electron beam welding explosion prevention explosion protection explosion welding fire prevention fire protection friction welding fumes gas high-frequency welding laser...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006960
EISBN: 978-1-62708-439-0
... expands during heating, and bursting the confinement leads to an explosion. The National Fire Protection Association’s “Standard for Combustible Metals,” NFPA 484, provides details about production, processing, finishing, handling, recycling, storage, and use of all metals and alloys that are in a form...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0005650
EISBN: 978-1-62708-177-1
... Abstract This article describes the safety precautions required for using laboratory equipment. It reviews the various personal protective equipment specified on the Material Safety Data Sheets (MSDS) for laboratory chemicals and products. The article provides information on the storage...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006075
EISBN: 978-1-62708-175-7
..., open flames, mechanical sparks, and friction. Separate heated surfaces from dusts. Provide spark/ember detection and extinguishing systems. Separate areas having potential for dust explosion from other areas by distance or by using barriers. Appropriate personal protective equipment must...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... bonding arc welding brazing compressed gas handling cutting electric shock electrical safety electron-beam welding explosion welding eye protection face protection friction welding high-frequency welding laser-beam welding oxyfuel gas welding protective clothing resistance welding safety...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005757
EISBN: 978-1-62708-171-9
... the booth, fumes, asphyxiation from gases, oxy- gen enrichment/de ciency, an explosive or 1 Limit distance of exposed feed wires in setup and provide protective barrier so that wires cannot be touched combustible atmosphere, excessive noise or 2 Personnel must wear protective harness equipment to prevent...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006137
EISBN: 978-1-62708-175-7
... Safety and Health Administration , June 1981 7. Bodurtha F.T. , Industrial Explosion, Prevention and Protection , McGraw-Hill , 1980 8. Handbook of Industrial Loss Prevention , Factory Mutual Engineering Co., McGraw-Hill , 1967 9. Stratton P.F. and Stanescu M.S...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001376
EISBN: 978-1-62708-173-3
... Abstract Explosion welding (EXW) is a solid-state metal-joining process that uses explosive force to create an electron-sharing metallurgical bond between two metal components. This article discusses the process attributes of EXW, including metallurgical attributes, metal combinations, size...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005758
EISBN: 978-1-62708-171-9
... “Safe Handling of Compressed Gases” P-1 “The Inert Gases Argon, Nitrogen, and Helium” P-9 “Oxygen-Deficient Atmospheres” SB-2 “Safety Release Device Standards—Cylinders for Compressed Gases” S-1.1 “Standard for Bulk Oxygen Systems at Consumer Sites” NFPA 50 National Fire Protection...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005717
EISBN: 978-1-62708-171-9
... and ventilation and heat exhaust. The article provides information on the personal protective equipment for eyes and skin from radiation, and ears from noise. It also discusses other potential safety hazards associated with thermal spraying, namely, magnetic fields and infrasound. dust collector fume gas...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... ), the National Fire Protection Association (NFPA), established in 1961 by a group of fire and explosion investigation professionals, recognized the need for an organization to provide superior technical training and education. Thus, NFPA 921 ( Ref 5 ) was developed as a guide for fire and explosion investigation...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005602
EISBN: 978-1-62708-174-0
... Abstract This article provides an overview of the important mechanistic aspects of explosion welding (EXW), the process-material interactions, and the critical aspects or parameters that must be controlled. The procedure for ensuring the control of process parameters is also discussed...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005759
EISBN: 978-1-62708-171-9
... designed and properly used enclosure. This article does not cover the personal protective equipment needs of any operator that may enter the booth before or after the process is active. It addresses only the design of spray booths that allow normal operation of the process from outside the booth itself...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
... and the workpiece. When very high velocities or pressures are needed, the explosive may be placed directly (or with a thin protective layer) on the workpiece. This is classified as a contact operation. One of the more common contact operations is in the explosive cladding of materials via solid-state impact welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... dust could be an explosive hazard if not properly handled. Aluminum and zinc fumes produced in thermal spraying and in blasting debris from surface preparation, especially if there was old lead-beating paint, require personnel protection, containment, and the requisite waste disposal Job...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006065
EISBN: 978-1-62708-175-7
... is in North America where annual shipments are about 40,000 tons ( Ref 2 ). Atomized aluminum powders are used in a variety of applications that include pyrotechnics, explosives, rocket fuel, thermite welding, aluminothermic reduction, chemical processes (as catalyst or reagent), additives for lightweight...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003834
EISBN: 978-1-62708-183-2
.... The principal cladding techniques include cold roll bonding, hot roll bonding, hot pressing, explosion bonding, and extrusion bonding ( Fig. 1 ). Regardless of the technique used, the bond is achieved by forcing clean oxide-free metal surfaces into intimate contact; this causes a sharing of electrons between...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003303
EISBN: 978-1-62708-176-4
... the structure/property effects of planar shock waves on ductile materials (metals and alloys) due to the wave propagation through the material. The techniques include explosive-driven shock-loading methods, shock-loading methods using exploding foil and laser-driven impactors, gas/powder launcher-driven shock...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001276
EISBN: 978-1-62708-170-2
... Abstract Rust-preventive compounds are removable coatings used for the protection of the surfaces of iron, steel, coated or galvanized products, and other alloys. This article describes the basic parts of rust-preventive compounds, namely, carrier, film former, polar materials, and specialty...