Skip Nav Destination
Close Modal
By
Małgorzata Warmuzek
By
Vladimir Duz, Vladimir Moxson, Mykhailo Matviychuk, M. Ashraf Imam
By
Qiming Zhang, Babak Kondori, Xing Qiu, Jeffery C.C. Lo, S.W. Ricky Lee
By
J.R. Davis
By
A. Bloyce, P.H. Morton, T. Bell
Search Results for
eutectic fusible alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 29
Search Results for eutectic fusible alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fusible Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003161
EISBN: 978-1-62708-199-3
... Abstract Fusible alloys, eutectic and noneutectic, include a group of binary, ternary, quaternary, and quinary alloys containing bismuth, lead, tin, cadmium, and indium that melt at relatively low temperatures. This article describes the composition and mechanical properties of these alloys...
Abstract
Fusible alloys, eutectic and noneutectic, include a group of binary, ternary, quaternary, and quinary alloys containing bismuth, lead, tin, cadmium, and indium that melt at relatively low temperatures. This article describes the composition and mechanical properties of these alloys and lists the values of their composition and melting temperatures.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001092
EISBN: 978-1-62708-162-7
... that melt at relatively low temperatures, that is, below the melting point of tin-lead eutectic solder (183 °C, or 360 °F). The melting points of these alloys range as low as 47 °C (116 °F). Fusible alloys are used for lens blocking and tube bending, for anchoring chucks and fixtures, and for mounting thin...
Abstract
This article focuses on the use of indium and bismuth in low-melting-temperature solders and fusible alloys. It describes how the two elements typically occur in nature and how they are recovered and processed for commercial use. It also provides information on designations, classification, composition, properties (including temperatures ranges), and some of the other ways in which indium and bismuth alloys are used.
Book Chapter
Tin and Tin Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... bismuth, lead, tin, cadmium, indium, and antimony, and special alloys of this class may also contain significant amounts of zinc, silver, thallium, or gallium. Many of the fusible alloys used in industrial applications are based on eutectic compositions. These alloys find important uses in automatic...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Book Chapter
Soldering
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
... temperature. Alloys with a eutectic composition have liquidus and solidus temperatures, but they are coincident, and the temperature value is referred to as the “eutectic temperature.” The temperature spread between the solidus and liquidus temperatures define the pasty range of the alloy. Solders...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... elevated temperature the fusible-alloy link will melt, thus disconnecting the parts. Examples of tin-base eutectic fusible alloys are: Alloy composition, % Melting temperature °C °F 51.2 Sn, 30.6 Pb, 18.2 Cd 142 288 67.75 Sn, 32.25 Cd 177 351 61.86 Sn, 38.14 Pb 183 362 91 Sn...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Book Chapter
Metallographic Techniques for Aluminum and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003769
EISBN: 978-1-62708-177-1
...) 1220 (c) 0.11 0.033 0.28 0.085 (a) Eutectic reactions unless designated otherwise. (b) Monotectic reaction. (c) Peritectic reaction. Source: Ref 3 , 4 Most of the other alloying elements form such intermetallic compounds with aluminum in binary alloys and more complex...
Abstract
This article focuses on the metallography and microstructures of wrought and cast aluminum and aluminum alloys. It describes the role of major alloying elements and their effect on phase formation and the morphologies of constituents formed by liquid-solid and/or solid-state transformations. The article also describes specimen preparation procedures and examines the microstructure of several alloy samples.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001459
EISBN: 978-1-62708-173-3
... characteristics of solders are expressed as the solidus and the liquidus temperatures for the alloy. Solders composed of one metallic element, such as tin or indium, have a single melting temperature. Alloys with a eutectic composition have liquidus and solidus temperatures, but they are coincident...
Abstract
Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters, including types of solder alloy in terms of selection process; selection of substrate base material; flux selection based on adequate wettability by the solder; solder joint assembly; combined substrate, solder, and flux properties; and manufacturing procedures. Each of these parameters is explored using examples of both structural and electronic applications. The article concludes with a discussion on the environmental, safety, and health issues to be considered during soldering.
Book Chapter
Pressing and Sintering of Titanium Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006045
EISBN: 978-1-62708-175-7
... of the fusible element, or the appearance of eutectic melt systems during homogenization. Therefore it is necessary to load the fusible metals (aluminum) in the form of alloys with relatively high melting points. Besides, the iron-bearing MA should not create eutectics at heating and homogenization. A complex MA...
Abstract
Consolidation of titanium powders at room temperature may be performed by low-cost conventional powder metallurgy processes. This article provides information on various consolidation methods, namely, die pressing, direct powder rolling, and cold isostatic pressing. It also describes the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
... (UNS L50900–L50999) Lead-cadmium eutectic alloy (17.0% Cd, 83.0% Pb) L50940 Lead-copper alloys (UNS L51100–L51199) Copperized lead (0.05% Cu, 99.9% Pb) L51110 Chemical lead (see Table 2 ) L51120 Copper-bearing lead (0.06% Cu, 99.90% Pb min) L51121 Lead-tellurium-copper alloys...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
... of that found (or used) in most wrought alloys. Aluminum casting alloys must contain, in addition to strengthening elements, sufficient amounts of eutectic-forming elements (usually silicon) in order to have adequate fluidity to feed the shrinkage that occurs in all but the simplest castings. The phase...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
..., when compared with tin-lead alloys. Tin plate is sometimes used as a protective finish on device leads and terminations, although a solder dip coating is the preferred finish. Tin-base tin-lead solders represent the most widely used solders for electronic assembly: eutectic 63Sn-37Pb, near-eutectic...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Book Chapter
Lead and Lead Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
..., and foil. Lead in various forms and combinations is also used as a material for controlling sound and mechanical vibrations and shielding against x-rays and gamma rays. In addition, lead is used as an alloying element in steel and copper alloys to improve machinability, and it is used in fusible (low...
Abstract
This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest use of lead is in lead-acid storage batteries. Other applications include ammunition, cable sheathing, cast products such as type metals, terneplate, foils, and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability. The article concludes with information on the principles of lead corrosion, corrosion resistance of lead in water, atmospheres, underground ducts, soil and chemicals.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006017
EISBN: 978-1-62708-175-7
..., the platinum showed signs of melting. This finding was confirmed in 1781 by Achard ( Ref 6 ), who described the production of a fusible platinum-arsenic alloy, probably by forming the eutectic containing 87% Pt and melting at 600 °C (1110 °F). Achard formed solid platinum by hot hammering a sponge, welding...
Abstract
Powder metallurgy (PM) has been called a lost art. Long before furnaces were developed that could approach the melting point of metal, PM principles were used. This article provides an overview of the major historical developments of various methods of platinum powder production. The development of production methods took place in various phases starting from prehistoric time, post-war period, to recent and commercial period. The article discusses the powder metallurgy of platinum, as well as the commercial and post-war developments of PM. Literature and trade associations are also discussed.
Book Chapter
Failures in Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented; the analysis method and practical examples of soldering failures are included. Characteristics Solder is a fusible metal alloy used to create a permanent bond...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Book Chapter
Glossary of Terms: Thermal Spray Technology
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005748
EISBN: 978-1-62708-171-9
... interlocking. Gener- air dried. Dried without the application of heat. carbon and manganese) added to effect ally expressed in kilopascals (kPa) or pounds air feed. A process variation in which an air changes in properties. per square inch (psi). alloy system. A complete series of composi- adhesive wear. Wear...
Abstract
This article is a compilation of definition of the terms related to thermal spray coating technology.
Book Chapter
Hardfacing, Weld Cladding, and Dissimilar Metal Joining
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
... Abstract Hardfacing is a form of surfacing that is applied for the purpose of reducing wear, abrasion, impact, erosion, galling, or cavitation. This article describes the deposition of hardfacing alloys by oxyfuel welding, various arc welding methods, laser welding, and thermal spray processes...
Abstract
Hardfacing is a form of surfacing that is applied for the purpose of reducing wear, abrasion, impact, erosion, galling, or cavitation. This article describes the deposition of hardfacing alloys by oxyfuel welding, various arc welding methods, laser welding, and thermal spray processes. It discusses the categories of hardfacing alloy, such as build-up alloys, metal-to-metal wear alloys, metal-to-earth abrasion alloys, tungsten carbides, and nonferrous alloys. A summary of the selection guide for hardfacing alloys is presented in a table. The article describes the procedures for stainless steel weld cladding and the factors influencing joint integrity in dissimilar metal joining. It concludes with a discussion on joining carbon and low-alloy steels to various dissimilar materials (both ferrous and nonferrous) by arc welding.
Book Chapter
Factors in Materials Selection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003089
EISBN: 978-1-62708-199-3
... also reduce fluidity. The pattern of solidification of the alloy is important. Fluidity is inversely related to the temperature range over which solidification occurs. Thus, pure metals and eutectic alloys, with short freezing range, have greater fluidity. Fluidity is usually evaluated by pouring...
Abstract
This article discusses the key factors that influence the selection of engineered materials for a particular application. Materials properties such as ultimate tensile strength, yield strength, hardness, and ductility, which chiefly define the performance or functional characteristics, are covered. This is followed by manufacturing process considerations such as material factors, shape factors, process factors, and the characteristics of fabricability, namely formability, workability, castability, machinability, and weldability.
Book Chapter
Surface Engineering of Titanium and Titanium Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... Abstract This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book Chapter
Electrodeposition Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... chromium plating are (a) anodes, (b) current density, and (c) bath temperature. Anodes In contrast to other plating baths, which use soluble anodes to supply the bath with a large part of the metal ion being plated, chromium-plating baths are operated with insoluble lead alloy anodes...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Book
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3
1