Skip Nav Destination
Close Modal
By
George F. Vander Voort, Gabriel M. Lucas, Elena P. Manilova
By
Bruce L. Bramfitt, Samuel J. Lawrence
By
Ulrike Täffner, Veronika Carle, Ute Schäfer, Michael J. Hoffmann
By
James Thomas
By
Attila Diószegi, Lucian Vasile Diaconu
By
Donald C. Zipperian
By
Arlan O. Benscoter, Bruce L. Bramfitt
By
George F. Vander Voort
By
Toby V. Padfield
By
Janina M. Radzikowska, George Vander Voort
Search Results for
etching techniques
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 783
Search Results for etching techniques
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Preparation and Microstructural Analysis of High-Performance Ceramics
> Metallography and Microstructures
Published: 01 December 2004
Image
Published: 01 December 2004
Fig. 56 An example of the manual polish-etch technique as used in Figure 55(d) on 30% Zn annealed brass (similar to C26000) but with inadequate time for polishing, as compared to etch time during each cycle. An excessive degree of relief has developed between the grains. This effect
More
Book Chapter
Contrast Enhancement and Etching
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003749
EISBN: 978-1-62708-177-1
... Abstract Metallographic contrasting methods include various electrochemical, optical, and physical etching techniques, which in turn are enhanced by the formation of a thin transparent film on the specimen surface. This article primarily discusses etching in conjunction with light microscopy...
Abstract
Metallographic contrasting methods include various electrochemical, optical, and physical etching techniques, which in turn are enhanced by the formation of a thin transparent film on the specimen surface. This article primarily discusses etching in conjunction with light microscopy and describes several methods for film formation, namely, heat tinting, color etching, anodizing, potentiostatic etching, vapor deposition, and film deposition by sputtering. It provides information on the general procedures and precautions for etchants and reagents used in metallographic microetching, macroetching, electropolishing, chemical polishing, and other similar operations.
Book Chapter
Metallography and Microstructures of Stainless Steels and Maraging Steels
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix...
Abstract
This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex.
Book Chapter
Metallography and Microstructures of Carbon and Low-Alloy Steels
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
... of proven etching techniques for plain carbon and low-alloy steels. cementite etching ferrite grinding high-carbon steel low-alloy steel macrostructural examination medium carbon steel metallography microstructural constituents microstructural examination microstructure mounting pearlite...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
Book Chapter
Preparation and Microstructural Analysis of High-Performance Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003795
EISBN: 978-1-62708-177-1
..., and polishing as well as ceramographic etching. It discusses common imaging approaches, including scanning electron microscopy and thin-section polarized light techniques, a type of optical microscopy. The article also addresses microstructural classification, examining detailed micrographs from samples...
Abstract
Microstructural analysis reveals many important details about the qualities and capabilities of high-performance ceramics. This article explains how to prepare ceramic samples for imaging and the imaging technologies normally used. It describes sectioning, mounting, grinding, and polishing as well as ceramographic etching. It discusses common imaging approaches, including scanning electron microscopy and thin-section polarized light techniques, a type of optical microscopy. The article also addresses microstructural classification, examining detailed micrographs from samples of aluminum oxide, zirconium dioxide, aluminum nitride, silicon carbide, and piezoelectric ceramics.
Image
in Preparation and Microstructural Analysis of High-Performance Ceramics
> Metallography and Microstructures
Published: 01 December 2004
Image
Examples of TTS fracture in Ti-6Al-4V α-β alloys. (a) Solution treated and ...
Available to PurchasePublished: 01 January 1987
as verified by the plateau-etching technique ( Ref 91 , 94 ). (b) Fractograph of a β-quenched Ti-6Al-4V alloy consisting of a fine Widmanstätten martensitic microstructure. The tearing portions of the fracture surface exhibit TTS.
More
Book Chapter
Magnetic Barkhausen Noise for Nondestructive Inspection of Gears
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006476
EISBN: 978-1-62708-190-0
... cleansing of parts before submerging in or applying one or more acids and neutralizing agents. The end result is a surface that exhibits contrast between varying microstructures ( Ref 7 ). The nital etch technique is well established in industry, but it does have flaws. In most cases, etch inspection...
Abstract
Gears are a common part type for applications of the magnetic Barkhausen noise (MBN) techniques for nondestructive inspection. This article discusses the typical applications for MBN techniques, namely, detection of grinding retemper burn, evaluation of residual stresses, and detection of heat treatment defects, including the evaluation of case depth.
Book Chapter
Microstructures and Characterization of Gray Irons
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006343
EISBN: 978-1-62708-179-5
... and Radzikowska ( Ref 14 ), and Diószegi ( Ref 15 ). The method is based on a color etching technique at elevated temperature, where the etchant forms a 0.04 to 0.5 μm thick oxide film by reacting with the silicon from the investigated sample surface. The variation in film thickness is dependent on the local...
Abstract
This article discusses the characterization of gray iron structures, following the sequence of structure formation, as it applies to unalloyed or low-alloyed gray iron. Austenite grains are the basic crystallographic entities of the metallic matrix in gray cast iron precipitated from the liquid melt. The article describes the macrostructure and dendrite morphology of primary austenite. Eutectoid transformation in the solid state causes the transformation of austenite to pearlite and/or ferrite, producing the as-cast structure. The article discusses the observations of the graphite and ferritic/pearlitic structure in as-cast gray iron.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003752
EISBN: 978-1-62708-177-1
... formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color. anodizing chemical...
Abstract
This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color.
Book Chapter
Microstructural Analysis of Finished Surfaces
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
.... In most cases, however, an etching step is used to reveal microstructural features such as grain boundaries or phase features. Common etching techniques include chemical, electrolytic, thermal, and plasma techniques ( Ref 6 ). The commonly used techniques for metals are the chemical and electrolytic...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001754
EISBN: 978-1-62708-178-8
... of different crystal orientation, crystalline imperfections, or different composition. The resulting surface irregularities differentially reflect the incident light, producing contrast, coloration, polarization, etc. Various etching techniques are available, including chemical attack, electrochemical attack...
Abstract
Optical metallography, one of the most common materials characterization techniques, uses visible light to magnify structural features of interest. This article discusses the use of optical methods to evaluate micro and macrostructure and relate it to process conditions and material behavior. It covers the steps involved in sample preparation, including sectioning, mounting, grinding, polishing, and etching, and presents several examples of macro and microanalysis on various metals and alloys.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
... for the treatment. Acid etching is generally used to generate a microscale surface texture that has the ability to facilitate interlocking between the implant and the bone ( Ref 31 ). Recent studies show that combining the sandblasting and acid etching techniques enhances the degree of zirconia microroughness ( Ref...
Abstract
One of the most frequently cited advantages of ceramics in dentistry relates to aesthetics, and the same applies for dental implants. Zirconia has emerged as the material of choice for nonmetal implants. This article introduces the reader to zirconia as an implant material, its properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues.
Book Chapter
Metallography and Microstructures of Low-Carbon and Coated Steels
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003761
EISBN: 978-1-62708-177-1
... steels, such as sectioning, mounting, grinding, polishing, and etching, are discussed. The article also reviews the simple and proven manual sample preparation techniques of coated steel specimens. coated steel etching grinding low-carbon steel metallic coatings metallographic specimen...
Abstract
This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated steels, such as sectioning, mounting, grinding, polishing, and etching, are discussed. The article also reviews the simple and proven manual sample preparation techniques of coated steel specimens.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006116
EISBN: 978-1-62708-175-7
... of disturbed metal and that the true microstructure can be revealed using chemical etching, tint etching, or optical techniques. The examination of PM materials presents several unique challenges to this accurate representation. The most obvious is ensuring the faithful representation of the pore structure...
Abstract
Metallographic analysis is primarily a collection of visual and imaging techniques that provide an insight into the background of a material or part and its behavior. Metallic specimens, both porous and pore-free, are opaque, and as a result, an optical examination must be performed on carefully prepared planar (two-dimensional) surfaces. This article discusses the preparation sequence of ferrous powders, which is normally separated into several well-defined steps: sample selection, sectioning, mounting, grinding, polishing, drying, and chemical etching and/or coating. It provides several suggestions to promote and encourage the safety of those performing metallographic preparation and analysis.
Book Chapter
Metallographic Technique for Ferrous Metals
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
... and different product forms of steels. etching ferrous metals grinding metallurgical structure microstructural analysis mounting polishing Technique for Carbon and Alloy Steels THE PREPARATION OF SPECIMENS of carbon and alloy steels can require special consideration, and these special...
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
Book Chapter
Mechanical Grinding and Polishing
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003747
EISBN: 978-1-62708-177-1
.... The article explains the final-polishing processes such as skid polishing, vibratory polishing methods, etch-attack and electromechanical polishing, and polishing with special abrasives. An overview of special polishing techniques for unusual materials such as very hard and very soft materials is provided...
Abstract
This article illustrates how objective experiments and comparisons can be used to develop surface preparation procedures for metallographic examination of structural features of metals. These procedures are classified as machining, grinding and abrasion, or polishing. The article describes the abrasion artifacts in austenitic steels, zinc, ferritic steels, and pearlitic steels, and other effects of abrasion damages, including flatness of abraded surfaces and embedding of abrasive. Different polishing damages, such as degradation of etching contrast and scratch traces, are reviewed. The article explains the final-polishing processes such as skid polishing, vibratory polishing methods, etch-attack and electromechanical polishing, and polishing with special abrasives. An overview of special polishing techniques for unusual materials such as very hard and very soft materials is provided. The article concludes with a discussion on semiautomatic preparation procedures, providing information on procedures based on the use of diamond abrasives charged in a carrier paste and in a suspension.
Book Chapter
Metallography and Microstructures of Magnesium and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... Abstract Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related...
Abstract
Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related etching processes, including macroetching and color etching based on polarized light enhancement. The article concludes with an overview of the effects of alloying elements, including aluminum, beryllium, calcium, copper, iron, lithium, manganese, rare earth metals, silicon, silver, strontium, thorium, tin, zinc, and zirconium.
Book Chapter
Metallography and Microstructures of Cast Iron
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
... been well preserved. As-polished, not etched. Original magnification: 800× Polishing Polishing is an important phase of the preparation sequence, and poor polishing technique can still damage properly ground specimens. Use of inadequate lubricant, a worn cloth, an inadequately charged cloth...
Abstract
The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes the general preparation of metallographic specimens and the methods of macroscopic and microscopic examination. Usually, gray-scale (black-and-white) metallography is sufficient for microstructural analysis of cast irons. The article discusses the use of color metallography of gray irons and ductile irons. It also presents application examples of color metallography.
1