1-20 of 97

Search Results for epitaxy oxide layers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Marek Danielewski
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003589
EISBN: 978-1-62708-182-5
... of amorphous and epitaxy oxide layers and presents equations for various oxidation reaction rates. The article reviews different theories to describe the oxidation mechanism. These include the Cabrera-Mott, Hauffe-IIschner, Grimley-Trapnell, Uhlig, and Wagner theories. Schottky defect Frenkel defect...
Book Chapter

By Deborah A. Kramer
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
... by conventional means, and an epitaxial layer is added that contains rare earth oxides. These rare earth oxides provide magnetic domains, or bubbles, that can be oriented to store information and moved by an electric field for information readout. Memory devices can be made with silicon materials, bubbles...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001284
EISBN: 978-1-62708-170-2
... and technologies. Silicon epitaxial films are used routinely in the manufacture of high-performance bipolar and complementary metal-oxide semiconductor (CMOS) integrated circuits. The deposition of compound semiconductors with direct bandgaps has led to the production of millimeter and microwave devices, as well...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001285
EISBN: 978-1-62708-170-2
... that are commonly deposited using the PECVD process are noncrystalline materials such as oxides, nitrides, and oxynitrides of silicon ( Ref 1 ), and crystalline materials such as polycrystalline silicon ( Ref 2 , 3 , 4 ), epitaxial silicon ( Ref 5 , 6 , 7 ), and refractory metals and their silicides. All...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006670
EISBN: 978-1-62708-213-6
.... For this reason, there is a large degree of overlap in the characterization tools and strategies used for epitaxial films. Single-crystal wafer substrates also play a role in a variety of devices that may use other classes of semiconductor for their active layers. Other examples of thin films utilizing...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001286
EISBN: 978-1-62708-170-2
... from the bulk material by having surface layers of reacted and adsorbed material such as oxides and hydrocarbons. The surface chemistry, morphology, and mechanical properties of the real surface can be very important to the adhesion and film formation process. The underlying bulk material can...
Book Chapter

By Dehua Yang
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... Abstract This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm...
Book Chapter

By Marek Danielewski
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003590
EISBN: 978-1-62708-182-5
... corrosion THE CHARACTERISTICS AND BEHAVIOR of scale produced by various types of oxidation are examined in this article. The basic models, concepts, processes and open questions for high-temperature gaseous corrosion are presented. Properties of Scales Multiple Scale Layers A pure metal...
Book Chapter

By R.D. Granata
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... processes in the oxide and the ability of the oxide to resist spalling and breakdown or abrasion and erosion. The ion implantation process has provided a means for studying and modifying the surface layers active in gaseous corrosion. Interesting results have been obtained with implanted materials...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... by Auwarter in 1952 and Brinsmaid et al. in 1953. In 1971, Heitmann used reactive evaporation to deposit oxide films by evaporating the film material through a plasma of the reactive gas, and this technique is now generally called activated reactive evaporation. With this method, either a gas, such as oxygen...
Book Chapter

By R.C. Tucker, Jr.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... products. The predominant chemical reaction products for metals exposed to air are oxides. The oxide layers generally are thin, and contact with an opposing surface can expose the underlying unoxidized metal. This newly exposed surface will have a strong tendency to adhere to the opposing surface...
Book Chapter

By Steven Yu
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
... electrolytes ( Ref 6 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ). Such oxidation leads to the formation of titanium-base oxides, hydrated complexes, or aqueous cationic species as a result of active anodic dissolution. The oxide and hydrated-complex layers function as barriers between the surrounding...
Book Chapter

By Kenji Umezawa
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006628
EISBN: 978-1-62708-213-6
.... Various steps involved in the sample preparation, calibration, and data analysis are then discussed. The article concludes with a section on the applications and interpretation of LEIS in material analysis, including discussion on surface structural analysis, layer-by-layer (Frank-van der Merwe) growth...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... mL/100 g of aluminum and therefore show an increased tendency to form fusion zone porosity. Depending on the specific RS processing technique employed to produce the dispersion-strengthened aluminum alloy, the surface of the rapidly solidified particulates forms oxide layers to varying degrees ( Ref...
Book Chapter

By Wei-Kan Chu
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001775
EISBN: 978-1-62708-178-8
... is in turn transformed, and the silicon-to-nickel ratio increases 2:1. This last layer grows epitaxially, that is, under preservation of the crystalline orientation of the substrate—a fact established using RBS by channeling, which is present only when the target is a single crystal. Impurity Profiles...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... are remelted. The orientation of the previous layer can serve as a seed for the next layer being deposited, resulting in epitaxial growth and long columnar grains that result in a strong texture along the build orientation and inherent anisotropy. Moreover, localized heating may result in the depletion...
Book Chapter

By Amirali Zangiabadi
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006655
EISBN: 978-1-62708-213-6
... on surfaces, and they influence the adsorption properties, electronic structure, and growth of adsorbate layers. SPA-LEED has been used extensively to analyze semiconductor surfaces, including studies on the growth modes of epitaxial layers on semiconductor surfaces, defects in silicon surfaces, oxides...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006572
EISBN: 978-1-62708-290-7
... temperature of the material. This allows DAM processes to avoid the large volume change that occurs during solidification, as well as avoiding the epitaxial microstructures created by the layered solidification in many SAM processes. In line with the use of DAM to avoid undesired shape changes and residual...
Book Chapter

By James S. Horwitz
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001294
EISBN: 978-1-62708-170-2
... for the growth of high-quality multicomponent oxide thin films ( Ref 1 , 2 , 3 ). Conceptually, PLD is an extremely simple PVD technique. The output of a short laser pulse (10 to 30 ns) is focused onto a solid target. The laser rapidly raises the surface temperature of a small portion of the target well beyond...
Book Chapter

By David A. Shifler
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003671
EISBN: 978-1-62708-182-5
... the best fit, but not a perfect fit, between the oxide or scale and the substrate crystal structures. Additional Aspects of Scale Growth Stress develops in an epitaxial scale layer as it grows, due to the slight misfit between the scale and metal crystals. The stress is likely to produce dislocation...