1-20 of 370

Search Results for environmentally induced embrittlement

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Brett A. Miller
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals. atomic structure brittle cracking crack propagation crystalline structure ductile cracking ductility environmentally induced...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly...
Book Chapter

By Bruce Craig
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... of the environmentally induced fractures that were previously termed liquid-metal embrittlement are now considered solid metal induced embrittlement. Because satisfactory mechanistic models have not been developed for any of these forms of environmental cracking, the prediction of environmentally assisted cracking...
Book Chapter

By S. Lampman
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... Fracture where no film is visible and, due to impurity, atom segregation at the grain boundary Environmentally induced embrittlement where there is neither a grain-boundary precipitate or solute segregation Grain-boundary segregation of elements (such as oxygen, sulfur, phosphorus, selenium...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... on the environmentally assisted crack growth of polymers is also included. The article details the evaluation of nanoscale environmental effects and indentation-induced cohesive cracking. It also provides information on scanning probe microscopy. hydrogen embrittlement stress-corrosion cracking corrosion fatigue...
Book Chapter

By E.R. Weishaupt
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
...: Brittle second-phase particles and/or films in grain boundaries, specifically when continuous or semicontinuous Fracture where no film is visible and, due to impurity levels, atomic segregation occurs at the grain boundary Environmentally induced embrittlement where there is neither a grain-boundary...
Book Chapter

By David G. Kolman
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003636
EISBN: 978-1-62708-182-5
... recently been recognized, and further research is needed concerning the effects of metallurgical, mechanical, and chemical parameters on embrittlement. However, it is clear that SMIE must be recognized as yet another phenomenon of environmentally induced embrittlement. Acknowledgment This article...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC...
Book Chapter

By John R. Scully, Ashley Lucente
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003603
EISBN: 978-1-62708-182-5
... corrosion, and microbiologically influenced corrosion, which fit under the classification of corrosion that is not influenced by any outside process. It also explains mechanically assisted degradation and environmentally induced cracking, which fit under the classification of corrosion that is influenced...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
.... For the purposes of this Volume, this article summarizes some of the characteristics of metal-induced embrittlement. As noted, it shares many of these characteristics with other forms of environmentally induced cracking, such as hydrogen stress cracking and SCC. This article also briefly reviews some commercial...
Book Chapter

By Brett Miller, Phillip Swartzentruber
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
... ” in this Volume. Decohesive rupture may also occur from external influences such as hydrogen embrittlement, stress-corrosion cracking, and liquid-metal-induced embrittlement (see also the articles “ Factors Influencing Fractures and Fracture Appearance ” and “ History of Fractography ” in this Volume). When...
Image
Published: 01 January 1997
Fig. 24 Schematic reaction-rate surface illustrating the variation in crack-propagation rate with the rate-controlling parameters in the slip-dissolution, film-induced cleavage and hydrogen-embrittlement mechanisms for environmentally assisted cracking in ductile alloy/aqueous environment More
Book Chapter

By Bopinder Phull
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003667
EISBN: 978-1-62708-182-5
... physical or chemical action is involved. An identical disk is placed in the same test cell and subjected to hydrogen pressure until it bursts. Metallic materials that are susceptible to environmental hydrogen embrittlement fracture at a pressure lower than the helium-burst pressure. Materials...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided. failure...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article...
Book Chapter

By Steven Bradley
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007032
EISBN: 978-1-62708-387-4
... Abstract Stainless steel alloys have many unique failure mechanisms, including environmentally assisted cracking, cracking associated with welding, and secondary phase embrittlement. This article describes these failure mechanisms and the fracture modes associated with the different categories...
Book Chapter

By R.H. Jones
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
...-CORROSION CRACKING (SCC) describes service failures in engineering materials that occur by slow environmentally induced crack propagation. The observed crack propagation is the result of the combined and synergistic interaction of mechanical stress and corrosion reactions. This is a simple definition...
Book Chapter

By David G. Kolman
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003635
EISBN: 978-1-62708-182-5
... Abstract Liquid metal induced embrittlement (LMIE) is the reduction of the fracture resistance of a solid material during exposure to a liquid metal. This article discusses the mechanisms and occurrence condition of LMIE and describes the effects of metallurgical factors, such as grain size...
Book Chapter

By Bruce Craig
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003634
EISBN: 978-1-62708-182-5
...) and ductile transgranular fracture (TG) are shown. RA, reduction of area. Source: Ref 28 Aluminum Alloys Only recently has it been determined that hydrogen embrittles aluminum. For many years, all environmental cracking of aluminum and its alloys was represented as SCC; however, testing...