Skip Nav Destination
Close Modal
Search Results for
environmentally assisted failure mechanisms
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 480 Search Results for
environmentally assisted failure mechanisms
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007036
EISBN: 978-1-62708-387-4
... failure mechanisms. alloy steel brittle cleavage fracture carbon steel ductile fracture environmentally assisted failure mechanisms fatigue fracture fractography intergranular fracture FRACTURE MECHANISMS in carbon and alloy steels are presented as a basic summary in this article...
Abstract
In this article, a basic summary of fracture mechanisms in carbon and alloy steels is presented, along with numerous examples of these fractures. These examples include ductile fracture, brittle cleavage fracture, intergranular fracture, fatigue fracture, and environmentally assisted failure mechanisms.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007032
EISBN: 978-1-62708-387-4
... Abstract Stainless steel alloys have many unique failure mechanisms, including environmentally assisted cracking, cracking associated with welding, and secondary phase embrittlement. This article describes these failure mechanisms and the fracture modes associated with the different categories...
Abstract
Stainless steel alloys have many unique failure mechanisms, including environmentally assisted cracking, cracking associated with welding, and secondary phase embrittlement. This article describes these failure mechanisms and the fracture modes associated with the different categories of stainless steel. These mechanisms and modes are grouped together because of their similarities across the categories.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... Abstract This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals...
Abstract
This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals and intermetallic compounds as a result of exposure to their environment.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002361
EISBN: 978-1-62708-193-1
... adsorb to the clean metal surfaces and have the potential to reduce surface energy to a greater extent than hydrogen. Yet, neither oxygen nor nitrogen accelerates crack growth rates like hydrogen does. Hydride Mechanism Many metals that are susceptible to environmentally assisted cracking are also...
Abstract
Corrosion fatigue refers to the phenomenon of cracking in materials under the combined actions of fatigue loading and a corrosive environment. This article focuses on the various mechanisms of corrosion fatigue, namely, hydrogen-assisted cracking, anodic dissolution, and surface energy reduction. It discusses the variables affecting corrosion fatigue. The effect of fatigue load frequency, environment, grain size, stress ratio, waveform, and temperature fatigue crack growth are also discussed.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006843
EISBN: 978-1-62708-387-4
... of fracture surfaces are described and illustrated for the important types of fracture mechanisms. It provides a detailed discussion on environmentally assisted crack initiation and growth. environmentally assisted crack growth environmentally assisted crack initiation fatigue fracture fracture...
Abstract
This article presents the concept of fracture mechanisms in general terms in order to impart a practical understanding as well as enable readers to develop the ability to identify the basic fracture mechanisms correctly based on microscope observations. The key microscopic features of fracture surfaces are described and illustrated for the important types of fracture mechanisms. It provides a detailed discussion on environmentally assisted crack initiation and growth.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... diagram of mechanisms. (b) Venn diagram of variables listed in Table 1 Material, mechanical, and environmental variables of environmentally assisted cracking Table 1 Material, mechanical, and environmental variables of environmentally assisted cracking Metallurgical variables...
Abstract
This article focuses on the corrosion fatigue testing of steel in high-temperature water and discusses critical experimental issues associated with it. It provides information on the fundamental aspects of environmental crack advancement in general. The article explains the concepts and role of environmentally assisted crack growth in corrosion fatigue. It also discusses the fatigue test methods, including crack initiation testing and crack propagation testing. The article describes the specific types and influence rankings of experimental variables in corrosion fatigue.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006942
EISBN: 978-1-62708-395-9
... failure mechanisms, such as creep and fatigue, are time dependent and may not manifest themselves in these studies. Other mechanisms, such as photo-oxidation and environmental stress cracking, manifest themselves only when the product is used in a particular environment which presents difficulties...
Abstract
Failure analysis is the process used to determine the cause of a failure. There is no definitive method for performing a failure analysis, and the method chosen is dependent upon the type of failure, the availability of background information, the tools available to perform the analysis, and the skills of the analyst. The information outlined in this article focuses on the general methodology while allowing for case-specific techniques to be utilized along the way. It covers the causes of failure, why a failure analysis is performed, the failure analysis process, the planning of failure analysis investigation, recommendations to prevent the need for a failure analysis, the implementation of product reviews, and forensic standards.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... fracture mechanics metals environmentally assisted crack growth polymers nanoscale environmental effects indentation-induced cohesive cracking scanning probe microscopy Precracked Specimen Testing qxidizing Gas acidified chloride ceramics liquid metals environmentally assisted cracking...
Abstract
This article describes the types, mechanism, and typical test methods along with their configurations for the evaluation of hydrogen embrittlement, stress-corrosion cracking, and corrosion fatigue with an emphasis on fracture mechanics methodologies for metals. An overview on the environmentally assisted crack growth of polymers is also included. The article details the evaluation of nanoscale environmental effects and indentation-induced cohesive cracking. It also provides information on scanning probe microscopy.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
.... Environmentally assisted cracking includes corrosion, stress-corrosion cracking, hydrogen-induced cracking, and other environmentally assisted failure modes. High-temperature creep includes creep rupture and creep crack growth. This article discusses each of these categories, as well as the benefits of a fitness...
Abstract
Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
...-related failures. Testing in the form of long-term environmental exposure or accelerated aging can assist the designer in identifying the susceptibility of a candidate material to these factors and to time-dependent changes in physical properties. Importantly, this testing does not need to test a part...
Abstract
A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design. This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design-related failures. It also discusses the most common causes of design-related failures of plastic parts. The article can assist in both failure analysis and in the prevention of failures in which design may be a contributing factor or a root cause.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
...-CORROSION CRACKING (SCC) describes service failures in engineering materials that occur by slow environmentally induced crack propagation. The observed crack propagation is the result of the combined and synergistic interaction of mechanical stress and corrosion reactions. This is a simple definition...
Abstract
Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003392
EISBN: 978-1-62708-195-5
..., and environmental constraints. mechanical properties composites repeatability cost size damage tolerance durability environmental constraints design criteria DESIGN CRITERIA are the decisive quantified goals that a product must attain. A product needs to achieve a certain level of safety, cost...
Abstract
This article describes common design criteria and identifies the design considerations that have a significant effect on the end product. The design criteria include cost, size, mechanical properties, repeatability and precision of parts, damage tolerance and durability, and environmental constraints.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006323
EISBN: 978-1-62708-179-5
... and propagation of cracks through grain or phase boundaries. Some of the mechanisms identified are: Precipitation of embrittling phases at the grain boundaries Environmentally assisted embrittlement Intergranular corrosion Grain-boundary cavitation and cracking at high temperatures...
Abstract
As cast iron parts are extensively applied, fracture events will eventually take place. Consequently, it becomes essential to carry out failure analyses to identify the cause of fracture and to provide corrective actions that allow safe operation. This article presents a description of the main fracture modes and their characteristic fractographic features. It discusses the four principal fracture modes: dimple rupture (or fracture), cleavage, fatigue, and intergranular fracture. The article provides information on special cases of environmentally assisted fracture. It concludes with a description of fractographic analyses for identifying the direction of propagation of a crack.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003969
EISBN: 978-1-62708-183-2
... and Water Drop Impingement) 326 Fatigue Forms of Mechanically Assisted Degradation (section on Corrosion Fatigue) 328 Environmentally induced cracking Stress-corrosion cracking Stress-Corrosion Cracking 346 Hydrogen damage Hydrogen Damage 367 Liquid metal embrittlement Liquid...
Abstract
This article is a pictorial guide to forms of corrosion that draws attention to common pitfalls or situations that have caused premature corrosion, sometimes with expensive consequences. The examples used are not exhaustive; they highlight the necessity to fully examine materials, conditions, and specific circumstances that together can reduce the anticipated service life of a component or plant. The color images in this article are categorized according to the type of corrosion following the general order that is adopted in Volume 13A of ASM Handbook. The first table of the article provides a categorization of the forms of corrosion. It also provides a reference to articles or sections of articles in Volume 13A that detail the particular corrosion form or mechanism. The second table is a guide listing the figures in this article by material and by the corrosion form or mechanism illustrated.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
.... The article explains the specific forms of corrosion, including general corrosion, localized attack, and environmentally assisted cracking. It provides a discussion on the engineering aspects of design that can, without due care and attention, precipitate unexpected premature failure. The article reviews ways...
Abstract
This article discusses the principles of corrosion and the basis of the various prevention measures that can be taken for different corrosion modes. It describes aqueous corrosion phenomena in terms of the electrochemical reactions that occur at the metal-environment interface. The article explains the specific forms of corrosion, including general corrosion, localized attack, and environmentally assisted cracking. It provides a discussion on the engineering aspects of design that can, without due care and attention, precipitate unexpected premature failure. The article reviews ways to improve corrosion awareness and prevent corrosion/degradation. It describes a life prediction method with an example of environmental degradation in light-water nuclear reactors. The article concludes with a discussion on the validation of life-prediction algorithms and their applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
... Abstract This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches...
Abstract
This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches, and their impact on aging management programs. The article reviews the effects of materials, environment, and stress factors on the cracking susceptibility of ferritic and austenitic structural alloys in BWRs. It describes the methods, such as data-based life-prediction approaches and mechanisms-informed life-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006875
EISBN: 978-1-62708-387-4
... on the material and corrosive element. Environmentally assisted fracture mechanisms include stress-corrosion cracking (SCC), liquid metal embrittlement (LME), and hydrogen embrittlement. Creep is also a type of environmentally assisted fracture, where failure occurs due to an applied stress at a temperature...
Abstract
This article discusses the importance of the care and handling of fracture specimens and what to look for during the preliminary field or laboratory observation and collection, the preservation of specimens, and the cleaning and preparation of fracture specimens for additional analyses. The preservation of nonmetallic specimens, medical devices, oversized components, light alloys, nondestructively tested components, and materials that are part of legal proceedings is addressed.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... alloys that have achieved a significant neutron fluence in environments that span oxygenated to hydrogenated water at 270 to 340 °C (520 to 645 °F). Because cracking susceptibility is a function of radiation, stress, and environment, the failure mechanism has been termed irradiation-assisted stress...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006842
EISBN: 978-1-62708-387-4
... in place before plastics achieved widespread use. The mechanisms of fracture common to metals and plastics include monotonic or single-event ductile overload, stress rupture, monotonic brittle overload, environmentally assisted cracking, and fatigue. The decision tree for visual examination of failures...
Abstract
This article addresses macroscale fracture appearances, microscale fracture-surface appearances or morphologies, fracture mechanisms, and those factors that influence fractures and fracture appearances. Some of the macroscopic and microscopic features identified by the failure analyst to evaluate the fracture surfaces of metals and plastics are described and compared.
1