1-20 of 677 Search Results for

environmentally affected fracture

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided. brittle transgranular fracture creep fracture deformation ductile fracture...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... Abstract While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005342
EISBN: 978-1-62708-187-0
... Abstract This article discusses the visual and microscopic characteristics of fractures of cast alloys. These fractures include ductile rupture, transgranular brittle fracture, intergranular fracture, fatigue, and environmentally induced fracture. The article also describes the factors...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002409
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the metallurgical and environmental variables that affect fracture toughness, fatigue life, and subcritical crack growth of titanium alloys, such as chemistry, microstructure, texture, environment, and loading. The classes of titanium alloys considered...
Book Chapter

Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003280
EISBN: 978-1-62708-176-4
... on the volumes of materials involved as well as the loading modes and the microstructural characteristics determined by a particular processing route. Environment-Interface Interactions An environmentally induced reduction in interfacial fracture energy may result from the following: Change...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... fracture mechanics metals environmentally assisted crack growth polymers nanoscale environmental effects indentation-induced cohesive cracking scanning probe microscopy Precracked Specimen Testing qxidizing Gas acidified chloride ceramics liquid metals environmentally assisted cracking...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... Environmental variables Mechanical variables Alloy composition Distribution of alloying elements and impurities Microstructure and crystal structure Heat treatment Mechanical working Preferred orientation of grains and grain boundaries (texture) Mechanical properties (strength, fracture toughness, etc...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002361
EISBN: 978-1-62708-193-1
... is usually much larger than the relatively small surface energy (about 1000 to 1). Thus, even a large reduction in surface energy due to hydrogen adsorption should not markedly affect the fracture stress. Another discrepancy is that other environmental species, such as oxygen and nitrogen, also strongly...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach. brittle fracture buckling...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International