Skip Nav Destination
Close Modal
By
Steven M. Kreuzer, Maureen T.F. Reitman
By
Gary S. Was, Jeremy Busby, Peter L. Andresen
By
Dale B. Edwards, Anand R. Shah
By
Javier C. Cruz, Jeffrey A. Jansen
By
Y. Katz, N. Tymiak, W.W. Gerberich
By
Peter M. Scott, Pierre Combrade
By
F.W. Zok
Search Results for
environmental stress response
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 775
Search Results for environmental stress response
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Introduction to Engineering Plastics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003007
EISBN: 978-1-62708-200-6
... Abstract Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response...
Abstract
Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response of engineering plastics, this article discusses various factors, including thermal, mechanical and electrical properties, environmental factors, and material cost that are important in the selection of engineering plastics for specific applications.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003445
EISBN: 978-1-62708-195-5
... and its material and structural response must be accounted for by means of the analyses and tests required for certification. Changes in stress-strain caused by moisture absorption also must be accounted for by the same generic analysis and test sequences. The induced stresses and strains are caused...
Abstract
This article describes the role of the full-scale testing in assessing composite structural systems of aircraft and qualifying them for in-service use. The typical full-scale tests include static, durability, and damage tolerance. The article discusses the parameters to be considered when developing the basic requirements for the static test. These parameters consist of material considerations, moisture and temperature effects, structure size, load application alternatives, instrumentation requirements, test procedure considerations, ultimate load requirements, and test results correlation. The basic requirements common for durability and damage tolerance tests, including environmental effects and inspection requirements, are also discussed.
Image
Leaking copper pipes in a recently refurbished bathroom were attributed to ...
Available to PurchasePublished: 01 January 2005
tubing). Longitudinal cracks were revealed by reflection in a mirror. Control: The fitters were responsible for the applied (tensile) stresses during assembly/installation. The copper pipe was placed in direct contact with wet cement, which is a source of ammonia-leveling compounds. Separate channels
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... test conditions and their constantly changing formulation. Hot spot stress range refers to local peak stress amplitudes at specific locations of the structure. Source: Ref 5 The objective of this article is to introduce fundamental aspects of environmental crack advance in general...
Abstract
This article focuses on the corrosion fatigue testing of steel in high-temperature water and discusses critical experimental issues associated with it. It provides information on the fundamental aspects of environmental crack advancement in general. The article explains the concepts and role of environmentally assisted crack growth in corrosion fatigue. It also discusses the fatigue test methods, including crack initiation testing and crack propagation testing. The article describes the specific types and influence rankings of experimental variables in corrosion fatigue.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002361
EISBN: 978-1-62708-193-1
... by the reaction of environmental species such as gaseous hydrogen, water vapor, water, and so forth, with the newly cracked material at the crack tip. This hydrogen is absorbed at the metal surface and then transported by diffusion or dislocation sweeping mechanisms into the highly stressed region (plastic zone...
Abstract
Corrosion fatigue refers to the phenomenon of cracking in materials under the combined actions of fatigue loading and a corrosive environment. This article focuses on the various mechanisms of corrosion fatigue, namely, hydrogen-assisted cracking, anodic dissolution, and surface energy reduction. It discusses the variables affecting corrosion fatigue. The effect of fatigue load frequency, environment, grain size, stress ratio, waveform, and temperature fatigue crack growth are also discussed.
Book Chapter
Design-Related Failures of Plastic Parts
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
... as engineering materials, but these are often at the expense of susceptibility to environmental conditions due to their molecular mobility, which is also the source of the observed viscoelastic behavior. Over longer time periods, molecular re-arrangement in response to applied stresses can have important effects...
Abstract
A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design. This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design-related failures. It also discusses the most common causes of design-related failures of plastic parts. The article can assist in both failure analysis and in the prevention of failures in which design may be a contributing factor or a root cause.
Book Chapter
Effect of Irradiation on Stress-Corrosion Cracking and Corrosion in Light Water Reactors
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... enhancement in cracking. Since the early 1990s, the plant and laboratory evidence of IASCC makes a compelling case that cracking is environmentally assisted and that there is a well-behaved continuum in response over ranges in fluence, corrosion potential, temperature, stress, and so forth ( Ref 1 , 5...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Book Chapter
Mechanical Testing of Polymers
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... to choose the properties region in which the response of the material is still elastic. This is called the proportional region in a stress-strain curve, which obeys Hookean laws, and is the region where conventional strength-of-materials design calculations are likely a reasonable approximation. Otherwise...
Abstract
Mechanical properties are often the most important properties in the design and selection of engineering plastics. Temperature, molecular structure, crystallinity, viscoelasticity, and effects of environment, fillers and reinforcements are considered as the basic factors affecting the mechanical properties of engineering plastics. The testing methods for determining mechanical properties, including stress-strain test, modulus-directed tensile test, strength test, strength-directed tensile test, impact test, and dynamic mechanical test are discussed.
Book Chapter
Service Lifetime Assessment of Polymeric Products
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006947
EISBN: 978-1-62708-387-4
... presents fractographic examples of three time-dependent cracking mechanisms: fatigue fracture, creep rupture, and environmental stress cracking. It details characteristic fractographic features that can be observed in optical microscopy (OM) and scanning electron microscopy (SEM). creep rupture...
Abstract
This article provides an overview of polymer fractography, with examples of various fracture surfaces created under diverse loading conditions. The focus is on the interpretation of polymer fracture-surface features in light of the unique viscoelastic nature of polymers. The article presents fractographic examples of three time-dependent cracking mechanisms: fatigue fracture, creep rupture, and environmental stress cracking. It details characteristic fractographic features that can be observed in optical microscopy (OM) and scanning electron microscopy (SEM).
Book Chapter
Environmental Stress Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... Abstract While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... of the two. The deformational behavior of many materials in response to an applied stress can be examined by treating it solely as a solid or solely as a fluid, depending, of course, on the physical state of the material. However, plastics and polymeric materials, which hold a solid form, are treated...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003440
EISBN: 978-1-62708-195-5
... like boron/epoxy may behave counter to this) Operating temperatures that are closer to material property transition temperatures (compared to metals) Shear stress response that is uncoupled from normal stress response Heightened sensitivity to specimen preparation practices A good...
Abstract
A test plan specifies material properties to be evaluated, selects test methods, eliminates options offered by standard test methods by selecting specific specimen and test configurations, and defines success criteria. This article discusses various testing objectives that affect the execution of testing programs. The testing objectives include development of test matrices, testing standards, specimen preparation, environmental conditioning, instrumentation and data acquisition, failure modes, and data interpretation and recording.
Book Chapter
Adhesion Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003280
EISBN: 978-1-62708-176-4
... and thin films. The article provides an insight into the mechanisms of environmentally induced interfacial degradation by discussing the fundamental aspects of adhesion between two dissimilar materials. It examines the use of adhesion tests in the evaluation of stress-corrosion cracking within bimaterial...
Abstract
This article describes measurement techniques for the three basic types of adhesion: fundamental adhesion, thermodynamic adhesion, and practical adhesion. It discusses common measurement methods for each type of adhesion with the main focus on practical adhesion testing of coatings and thin films. The article provides an insight into the mechanisms of environmentally induced interfacial degradation by discussing the fundamental aspects of adhesion between two dissimilar materials. It examines the use of adhesion tests in the evaluation of stress-corrosion cracking within bimaterial interfaces. Testing techniques for <i>in situ</i> environmental testing of thin-film adhesion are also reviewed.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003381
EISBN: 978-1-62708-195-5
... Temperature and Environmental Effects on Polymeric Composites , ASTM STP 1174, Harris C.E. and Gates T.S. , Ed., ASTM , 1993 , p 95 – 113 • Wang J. , Kelly D. , and Hillier W. , Finite Element Analysis of Temperature Induced Stresses and Deformations of Polymer Composite...
Abstract
Hygrothermal behavior of cured composite materials relates to the combined and commonly synergistic effects of moisture absorption and temperature on various physical, chemical and mechanical properties. This article focuses on the influence of resins or matrices, reinforcements, processing, and diffusion on hygrothermal behavior of polymer-matrix composites and provides an outline on general considerations in assessing them. It discusses the hygrothermal testing and conditioning of polymer-matrix composites to assess fundamental hygrothermal behavior. The article provides information on the accelerated aging process for understanding the degradation mechanisms and failure modes in composites. It also describes the effect of moisture absorption on mechanical properties of polymer-matrix composites.
Book Chapter
Evaluation of Environmentally Assisted Crack Growth
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... on the environmentally assisted crack growth of polymers is also included. The article details the evaluation of nanoscale environmental effects and indentation-induced cohesive cracking. It also provides information on scanning probe microscopy. hydrogen embrittlement stress-corrosion cracking corrosion fatigue...
Abstract
This article describes the types, mechanism, and typical test methods along with their configurations for the evaluation of hydrogen embrittlement, stress-corrosion cracking, and corrosion fatigue with an emphasis on fracture mechanics methodologies for metals. An overview on the environmentally assisted crack growth of polymers is also included. The article details the evaluation of nanoscale environmental effects and indentation-induced cohesive cracking. It also provides information on scanning probe microscopy.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... yield stress, and are tensile in nature. The stresses can be externally applied, but residual stresses often cause SCC failures. However, compressive residual stresses can be used to prevent this phenomenon. Static loading usually is considered to be responsible for SCC, while environmentally induced...
Abstract
Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
... limited by the synergistic effects of stress and a hostile environment. This phenomenon, commonly referred to as environmental stress cracking (ESC), causes the initiation of crazing and crack formation which can lead to failure by changing the material from a ductile to a brittle plastic...
Abstract
The discussion on the fracture of solid materials, both metals and polymers, customarily begins with a presentation of the stress-strain behavior and of how various conditions such as temperature and strain-rate affect the mechanisms of deformation and fracture. This article describes crazing and fracture in polymeric materials, with a review of the behavior of the elastic modulus as a function of temperature or time parameters, emphasizing the importance of the viscoelastic nature of their deformation and fracture. The discussion covers the behavior of polymers under stress, provides information on ductile and brittle behaviors, and describes craze initiation in polymers and crack formation and fracture by crazing. Macroscopic permanent deformation of polymeric materials caused by shear-yielding and crazing, which eventually can result in fracture and failure, is also covered.
Book Chapter
Corrosion in Pressurized Water Reactors
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... heats may be responsible for a disproportionately high number of tubes affected by primary side IGSCC. The reasons for such variability are only partly understood. Fig. 7 Distribution of heats of Alloy 600 by susceptibility to intergranular stress-corrosion cracking (IGSCC) on the primary side...
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Book Chapter
Fracture Analysis of Fiber-Reinforced Ceramic-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003400
EISBN: 978-1-62708-195-5
... needed to describe crack-tip inelasticity. It demonstrates the effects of inelasticity on crack-tip stress fields and addresses the environmental degradation effects on damage tolerance. continuous fiber-reinforced ceramic composites mechanical loading inelastic deformation crack-tip stress...
Abstract
One of the key attributes of continuous fiber-reinforced ceramic composites (CFCCs) is their ability to undergo inelastic straining upon mechanical loading. This article reviews the mechanics of inelastic deformation and fracture of CFCCs, as needed for the development of damage-tolerant failure prediction methodologies for use in engineering design. It outlines a general framework for the description of fracture in structural materials in the presence of notches and cracks. The article describes the common classes of fracture behavior of CFCCs and presents the constitutive laws needed to describe crack-tip inelasticity. It demonstrates the effects of inelasticity on crack-tip stress fields and addresses the environmental degradation effects on damage tolerance.
1