Skip Nav Destination
Close Modal
By
Javier C. Cruz, Jeffrey A. Jansen
By
Y. Katz, N. Tymiak, W.W. Gerberich
By
David A. Shifler
By
J.R. Gordon
By
David A. Shifler, Robert B. Pond, Jr.
Search Results for
environmental cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1086
Search Results for environmental cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Environmental Stress Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... Abstract While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... Abstract This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals...
Abstract
This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals and intermetallic compounds as a result of exposure to their environment.
Image
Effect of environmental stress cracking agents on creep rupture performance...
Available to PurchasePublished: 01 January 2002
Image
Effect of environmental stress cracking agents on creep rupture performance...
Available to Purchase
in Effect of Environment on the Performance of Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Image
Environmental stress cracking fixtures for strain-controlled bent test acco...
Available to PurchasePublished: 15 May 2022
Fig. 8 Environmental stress cracking fixtures for strain-controlled bent test according to (a) ISO 22088-3 and (b) ASTM D543, Practice B
More
Image
Micrograph showing environmental stress cracking fractures originating at a...
Available to PurchasePublished: 15 May 2022
Fig. 12 Micrograph showing environmental stress cracking fractures originating at a design corner within a molded component. Multiple cracks initiated, extended, and subsequently coalesced to form the fracture. Ridgelike features representing crack unions are present between the individual
More
Image
Environmental stress-cracking fracture surface for a polycarbonate componen...
Available to PurchasePublished: 01 June 2024
Fig. 19 Environmental stress-cracking fracture surface for a polycarbonate component consisting of rib marks and localized deformed polymer. (a) Uncoated specimen, low-vacuum mode, backscattered electron compositional imaging, 10 kV accelerating voltage with a tungsten thermal-emission SEM
More
Image
OM images of a CPVC environmental stress cracking fracture surface after ex...
Available to PurchasePublished: 01 June 2024
Fig. 17 OM images of a CPVC environmental stress cracking fracture surface after exposure to a 50:50 mixture of DOP and mineral oil at 1% strain. (a) Overall fracture surface highlighting multiple crack origins along the bottom edge of the sample (red arrows). (b) Magnified image of the slow
More
Book Chapter
Evaluation of Environmentally Assisted Crack Growth
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... on the environmentally assisted crack growth of polymers is also included. The article details the evaluation of nanoscale environmental effects and indentation-induced cohesive cracking. It also provides information on scanning probe microscopy. hydrogen embrittlement stress-corrosion cracking corrosion fatigue...
Abstract
This article describes the types, mechanism, and typical test methods along with their configurations for the evaluation of hydrogen embrittlement, stress-corrosion cracking, and corrosion fatigue with an emphasis on fracture mechanics methodologies for metals. An overview on the environmentally assisted crack growth of polymers is also included. The article details the evaluation of nanoscale environmental effects and indentation-induced cohesive cracking. It also provides information on scanning probe microscopy.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the corrosion fatigue testing of steel in high-temperature water and discusses critical experimental issues associated with it. It provides information on the fundamental aspects of environmental crack advancement in general. The article explains the concepts...
Abstract
This article focuses on the corrosion fatigue testing of steel in high-temperature water and discusses critical experimental issues associated with it. It provides information on the fundamental aspects of environmental crack advancement in general. The article explains the concepts and role of environmentally assisted crack growth in corrosion fatigue. It also discusses the fatigue test methods, including crack initiation testing and crack propagation testing. The article describes the specific types and influence rankings of experimental variables in corrosion fatigue.
Book Chapter
High-Temperature Corrosion in Military Systems
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Book Chapter
Fitness-for-Service Assessment of Welded Structures
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach. brittle fracture buckling...
Abstract
Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach.
Book Chapter
High-Temperature Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Book Chapter
Corrosion of Cobalt and Cobalt-Base Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
... on the environmental cracking resistance of the cobalt alloys. Three welding processes that are used for hardfacing with the high-carbon Co-Cr-W alloys, namely, oxyacetylene, gas tungsten arc, and plasma-transferred arc are also discussed. The article examines the effects of various modes of high-temperature corrosion...
Abstract
This article addresses the cobalt and cobalt-base alloys most suited for aqueous environments and those suited for high temperatures. The performance of cobalt alloys in aqueous environments encountered in commercial applications is discussed. The article provides information on the environmental cracking resistance of the cobalt alloys. Three welding processes that are used for hardfacing with the high-carbon Co-Cr-W alloys, namely, oxyacetylene, gas tungsten arc, and plasma-transferred arc are also discussed. The article examines the effects of various modes of high-temperature corrosion. It describes the applications and fabrication of cobalt alloys for high-temperature service.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006926
EISBN: 978-1-62708-395-9
... or the chemical environment alone may not appreciably weaken a material. This phenomenon is referred to as environmental stress cracking (ESC). The ESC failure mechanism for a particular plastics-chemical environment combination can be quite complex and, in many cases, is not yet fully understood. This article...
Abstract
The susceptibility of plastics to environmental failure, when exposed to organic chemicals, can limit their use in many applications. A combination of chemical and physical factors, along with stress, usually leads to a serious deterioration in properties, even if stress or the chemical environment alone may not appreciably weaken a material. This phenomenon is referred to as environmental stress cracking (ESC). The ESC failure mechanism for a particular plastics-chemical environment combination can be quite complex and, in many cases, is not yet fully understood. This article focuses on two environmental factors that contribute to failure of plastics, namely chemical and physical effects.
Image
Potential ranges of environmentally assisted cracking by (I) hydrogen embri...
Available to PurchasePublished: 01 January 2002
Fig. 3 Potential ranges of environmentally assisted cracking by (I) hydrogen embrittlement, (II) cracking of unstable passive film, and (III) cracking initiated at pits near the pitting potential. Vertical dashed lines define potential range over which nonpassivating films may crack under
More
Image
Cases of environmental effects on fatigue crack growth. (a) True corrosion ...
Available to PurchasePublished: 01 January 2002
Fig. 24 Cases of environmental effects on fatigue crack growth. (a) True corrosion fatigue. (b) Stress-corrosion fatigue. (c) Stress-corrosion fatigue on true corrosion fatigue
More
Image
Potential ranges of environmentally assisted cracking by (I) hydrogen embri...
Available to PurchasePublished: 15 January 2021
Fig. 3 Potential ranges of environmentally assisted cracking by (I) hydrogen embrittlement, (II) cracking of unstable passive film, and (III) cracking initiated at pits near the pitting potential. Vertical dashed lines define potential range over which nonpassivating films may crack under
More
Image
Tensile creep equipment schematic for measuring environmental stress crack ...
Available to PurchasePublished: 15 May 2022
Fig. 6 Tensile creep equipment schematic for measuring environmental stress crack formation according to ISO 22088-2. Adapted from Ref 34
More
Image
Micrographs showing environmental stress crack initiation adjacent to a mol...
Available to PurchasePublished: 15 May 2022
Fig. 11 Micrographs showing environmental stress crack initiation adjacent to a molded-in boss with sharp corners. These corners act as points of significant stress concentration.
More
1