1-20 of 631

Search Results for environment-assisted cracking tests

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002361
EISBN: 978-1-62708-193-1
... , 1952 , p 99 10.6028/jres.048.013 3. Cullen W. , Gabetta G. , and Hanninen H. , “A Review of the Models and Mechanisms for the Environmentally-Assisted Crack Growth of Pressure Vessel and Piping Steels in PWR Environments,” NUREG/CR-4422 MEA-2078, U.S. Nuclear Regulatory...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... and role of environmentally assisted crack growth in corrosion fatigue. It also discusses the fatigue test methods, including crack initiation testing and crack propagation testing. The article describes the specific types and influence rankings of experimental variables in corrosion fatigue...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... Abstract This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... included. In general, the test results of environmentally assisted cracking can be influenced by a wide range of variables, such as those listed in Table 1 . In addition, because of the large contribution of environment to crack advance, attention to experimental detail is often critical. Unless...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006942
EISBN: 978-1-62708-395-9
... failure mechanisms, such as creep and fatigue, are time dependent and may not manifest themselves in these studies. Other mechanisms, such as photo-oxidation and environmental stress cracking, manifest themselves only when the product is used in a particular environment which presents difficulties...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
... influences corrosion fatigue crack propagation rates in aqueous environments. Controlled changes in the potential of a specimen can result in either the complete elimination or the dramatic enhancement of brittle fatigue cracking. The precise influence depends on the mechanism of the environmental effect...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
... or reducing the severity of the corrosive environment below some “threshold” criterion Fig. 4 Materials, stress, and environmental parameters relevant to environmentally assisted cracking in BWRs. NDT, non destructive testing. Source: Ref 38 Fig. 5 The three conjoint factors necessary...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... rupture Fig. 4 Schematic of crack tip processes that may be the rate-determining step in environmentally assisted crack propagation Changes in the environment that modify the rate-determining step will have a dramatic influence on the rate of crack propagation, while alterations to factors...
Book Chapter

Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004221
EISBN: 978-1-62708-184-9
... Abstract This article includes a collection of color images that aid in the identification and classification of forms of corrosion in industries and environments. It emphasizes the negative aspects of corrosion and examines the cost and the effort to test, evaluate, simulate, and prevent...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... failure mode. SEM, 95×. Fig. 830 : Fracture surface of samples tested in hydrogen. 4.6×. Fig. 831 : Higher-magnification view of fracture surface in Fig. 830 . Note brittle cyrstallographic cracking. SEM, 95× (R.J. Schwinghamer, NASA Marshall Space Flight Center) Fig. 828 Fig. 829...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006843
EISBN: 978-1-62708-387-4
... of fracture surfaces are described and illustrated for the important types of fracture mechanisms. It provides a detailed discussion on environmentally assisted crack initiation and growth. environmentally assisted crack growth environmentally assisted crack initiation fatigue fracture fracture...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... environment and stress/strain conditions also strongly influence observed cracking. While some investigators have observed limited intergranular cracking in inert environments, it is clear that the IASCC observations in the laboratory and in plants can only be accounted for by an environmentally assisted...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003668
EISBN: 978-1-62708-182-5
... of structural components. In corrosive environments, susceptible materials can fail even more quickly due to corrosion fatigue. Corrosion-fatigue cracking (CFC) is not limited to certain metallurgical conditions of the metal or to critical environmental species, as are other forms of environmentally assisted...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004149
EISBN: 978-1-62708-184-9
...), that their use now appears feasible. When a copper container is buried in a mostly reducing environment, the metal will initially be in contact with oxygen, until the oxygen is fully consumed, for example by corrosion ( Ref 31 , Ref 32 , Ref 33 ). It is known that copper may suffer environmentally assisted...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... an intergranular crack surface at the trailing edge ( Fig. 2 ). Comparison with an atlas of fracture features taken from earlier mechanical test specimens eliminated high-cycle fatigue (HCF) as the failure mechanism, because HCF cracking exhibits transgranular fracture features. The fracture features appeared...
Book Chapter

By Bruce Craig
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003634
EISBN: 978-1-62708-182-5
... vanadium zirconium alloys HYDROGEN DAMAGE is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. Hydrogen damage to specific alloys or groups of alloys manifests itself in many ways, such as cracking...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... earlier mechanical test specimens eliminated high-cycle fatigue (HCF) as the damage mechanism, because HCF cracking exhibits transgranular fracture features. The fracture features appeared to be consistent with both creep and low-cycle fatigue (LCF) damage mechanisms. However, a metallographic section...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
.... The article explains the specific forms of corrosion, including general corrosion, localized attack, and environmentally assisted cracking. It provides a discussion on the engineering aspects of design that can, without due care and attention, precipitate unexpected premature failure. The article reviews ways...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003666
EISBN: 978-1-62708-182-5
... State-of-the-Art Most stress-corrosion cracking (SCC) testing is performed either to determine the best material for a specific application or to compare the relative behavior of materials and effects of environment. Test conditions for the former should be representative of the most severe...