Skip Nav Destination
Close Modal
Search Results for
engineering conceptual design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 173 Search Results for
engineering conceptual design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002424
EISBN: 978-1-62708-194-8
... the engineering conceptual design and configuration design of special-purpose parts. It discusses the parametric design methods of the parts and best practices that are used by successful firms to achieve the goals of quality, cost, time-to-market, and marketing flexibility. configuration design...
Abstract
This article presents an overview of an engineering design process. Though the process is extremely complex, distinct stages of design activities are identified and described. The article illustrates guided iteration methodology that helps in problem solving in design. It describes the engineering conceptual design and configuration design of special-purpose parts. It discusses the parametric design methods of the parts and best practices that are used by successful firms to achieve the goals of quality, cost, time-to-market, and marketing flexibility.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
... Abstract This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment...
Abstract
This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment design, and detail design, is reviewed. The article discusses the design process at the personal and project levels but takes into consideration the effects of some higher level influences and interfaces often found to contribute to engineering failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... design expertise that is beyond the scope of this article. However, the general process of engineering design can be described as an iterative procedure that can be roughly divided into two basic stages ( Fig. 3 ) ( Ref 1 ): A conceptual design stage involving the definition of product...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
.... The second step in a new engine design is conceptual design. Conceptual design is a sophisticated analog to the drawing on a napkin. Only enough engineering analysis is done at this stage to determine what likely could be made to work and what likely could not. The aerodynamics engineers define the flowpath...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... specialized design expertise that is beyond the scope of this article. However, the general process of engineering design can be described as an iterative procedure that can be roughly divided into two basic stages ( Fig. 3 , Ref 1 ): A conceptual design stage involving the definition of product...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002423
EISBN: 978-1-62708-194-8
... significant additional detail about factors that must be considered during the conceptual stage of design. While many of these factors are not quantifiable, they affect the ultimate cost and ability of the design to satisfy customer expectations. Often, it is the materials engineer who is best equipped...
Abstract
This article discusses the various roles and responsibilities of materials engineers in a product realization organization and suggests different ways in which materials engineers may benefit their organization. It also provides a summary of the concepts discussed in the articles under the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003087
EISBN: 978-1-62708-199-3
... for conceptual design Level IV usually can be postponed until the detail (parametric) design. For all the stages of engineering design, the problem solving methodology employed is called guided iteration ( Ref 3 ). The steps in the guided iteration process are formulation of the problem, generation...
Abstract
Engineering design should result in a product that performs its function efficiently and economically within the prevailing legal, social, safety, and reliability requirements. This introductory article discusses some key considerations in design, material selection, and manufacturing that a materials engineer should take into account to satisfy such requirements. It includes a brief section on concurrent engineering, which companies use to ensure that all needed input is obtained and addressed concurrently throughout the product lifecycle, including material selection and processing, product design, cost analysis, manufacturing, recyclability, and performance.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002425
EISBN: 978-1-62708-194-8
... in the conceptual design process. They are intended to: Focus design efforts Define goals Define timelines for task completion Provide guidelines for the design process, to prevent conflicts within the design team and concurrent engineering organization The first step in task clarification...
Abstract
A concise and quantified specification is essential to developing suitable product concepts. This article describes an integrated set of structured methods for identifying the customer population for the product and developing a representation of feature demands. The structured methods include design task probing, customer needs analysis, functional decomposition, and competitive benchmarking for directly mapping customer statements to functional requirements.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002450
EISBN: 978-1-62708-194-8
..., it must be done at the conceptual design step because later in the design process too many decisions have been made to allow for a radical change. At the embodiment or configuration level of design, the emphasis is on determining the shape and approximate size of a part using engineering methods...
Abstract
This article describes the process of materials selection in relation to the design process, such as materials selection for a new design and materials substitution for an existing design. It reviews the performance characteristics of materials using prototype tests or field tests to determine their performance under actual service conditions. The article describes the selection of a material in relation to the manufacturing process and presents the factors that influence materials selection based on costs and related aspects. These factors include metallurgical requirements, dimensions, processing, quantity, packing, marking, and loading. The article discusses how the needs for materials data evolve as a design proceeds from conceptual to detail design. It describes the methods of materials selection, namely, cost per unit property method, weighted property index method, and limits on properties method.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003461
EISBN: 978-1-62708-195-5
... Abstract As with most engineering materials, the failure of composite materials, no matter how complex, can be divided into three discrete arenas: improper design, improper manufacturing, and improper use of the end product. This article reviews the failure causes from a broad perspective, so...
Abstract
As with most engineering materials, the failure of composite materials, no matter how complex, can be divided into three discrete arenas: improper design, improper manufacturing, and improper use of the end product. This article reviews the failure causes from a broad perspective, so that the composites designer, manufacturer, and user can readily see some of the more common issues associated with unique materials. It discusses the three discrete arenas of failure of composite materials: improper design, improper manufacturing, and improper use of the end product.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006963
EISBN: 978-1-62708-439-0
... of the system owner regarding how the data interconnects. For example, in a laser powder-bed fusion scenario, additive engineers at two different organizations are collaborating on a new part design and agree to build the same part using similar powder on similar machines. Each engineer agrees to capture...
Abstract
Additive manufacturing, as the first fully digital manufacturing process, is critically dependent on data, including the input materials, the process parameters guiding the three-dimensional printing process execution, any postprocessing steps, and any inspections performed on the printed coupons and/or parts, to name just a few examples. This article presents the standards to enable findable, accessible, interoperable, and reusable (FAIR) data. It then discusses three main types of data models that are used to capture different levels of detail and granularity of data: conceptual, logical, and physical. Different approaches and techniques with their own strengths and weaknesses are developed to model data. Four of the major types of data models include hierarchical, relational, object-oriented, and network/graph-based. The article also presents the evolution of data management approaches. It then describes the characteristics of effective logical data models.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002448
EISBN: 978-1-62708-194-8
..., there is often great pressure to cut corners. Examples of preliminary product specifications are provided in the article “Conceptual and Configuration Design of Products and Assemblies” in this Volume. Engineering Sketches Engineering sketches are produced by the design engineer or a senior designer...
Abstract
Documentation must be focused toward explaining a specific task such as design process, by conveying the needs of product engineering, materials engineering, and manufacturing. This article describes how documentation supports the process of bringing a product to market, who uses the information, and how it serves as a key form of communication, with examples. It discusses the key features that most documents must define. The article describes the requirements of engineering and manufacturing and how drawings are used as a communication medium.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002440
EISBN: 978-1-62708-194-8
... are the implications of the above example for the design engineer? It is necessary to look carefully at the completed design to be sure that it is indeed appropriate and that it does not incorporate problems for which proper technological solutions have existed for some time. (For example, an independent assessment...
Abstract
Products liability is a legal term for the action whereby an injured party (plaintiff) seeks to recover damages for personal injury or property loss from a producer and/or seller when the plaintiff alleges that a defective product caused the injury or loss. This article provides information on the legal bases for products liability and definitions for two types of defects: manufacturing defects and design defects. It summarizes other possible defects in design as well as preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... and effects analysis fault analysis fault equivalence probability of failure product development cycle FAILURE MODES AND EFFECTS ANALYSIS (FMEA) has evolved into a powerful tool that can be used by design engineers during all phases of product development to enhance product safety and reliability...
Abstract
This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how fault trees are used to unify the analysis of failure modes caused by design errors, manufacturing and maintenance processes, materials, and so on, and to assess the probability of failure mode occurrence. It concludes with information on some of the approaches to automating the FMEA.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002437
EISBN: 978-1-62708-194-8
... Abstract The central approach of human factors engineering is the systemic application of relevant information about human characteristics and behavior to the design of human-made objects, facilities, and environments that people use. This article focuses on the elements that are considered...
Abstract
The central approach of human factors engineering is the systemic application of relevant information about human characteristics and behavior to the design of human-made objects, facilities, and environments that people use. This article focuses on the elements that are considered for an acceptable level of human performance. These include the state or condition of the human being; the activity, including equipment and required tools; and the context in which the activity is performed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003505
EISBN: 978-1-62708-180-1
... (i.e., squeezing) the left-hand lever. When the throttle was released, the engine slowed. At some lower (undetermined) speed, the clutch disengaged and the tracks stopped moving, thereby generating significant drag. As an exercise, this design is analyzed from the human factors viewpoint...
Abstract
This article discusses the three legal theories on which a products liability lawsuit is based and the issues of hazard, risk, and danger in the context of liability. It describes manufacturing and design defects of various products. The article explains a design that is analyzed from the human factors viewpoint and details the preventive measures of the defects, with examples. It presents four paramount questions relating to the probability of injury which are asked even when one executes all possible preventive measures carefully and thoroughly.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002348
EISBN: 978-1-62708-193-1
... of knowledge, namely materials engineering, manufacturing engineering, structural analysis (including loads, stress, strain, and fracture mechanics analysis), nondestructive inspection and evaluation, reliability engineering, testing technology, field repair and maintenance, and holistic design procedures. All...
Abstract
This article provides ASTM standard definitions for fatigue and describes the approaches that are used to design finite or infinite life, used in a complementary sense in fatigue design. It explains four distinct phases of fatigue: nucleation, structurally dependent crack propagation, crack propagation, and final instability. The article discusses the significant role that fatigue plays in industrial design applications.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002454
EISBN: 978-1-62708-194-8
.... In the conceptual design stage, an alternative might be non-heat-treatable aluminum alloy. In the configuration phase, a specific material, such as ASTM B 209 aluminum alloy 5052-H38, might be an appropriate alternative. Alternatives can be suggested by several sources, including the design engineer's experience...
Abstract
In materials selection, a decision matrix method refers to any formalized procedure by which materials are ranked prior to a selection decision. This article describes the advantages and limitations of decision matrix methods, as well as the steps involved, with examples. The methods include the Pugh method, the Dominic method, and the Pahl and Beitz method. The article discusses the three important concepts in decision making: alternatives (candidate materials), criteria (objectives), and weighting factors.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002456
EISBN: 978-1-62708-194-8
... for computer-aided design and manufacturing (CAD/CAM) processes, but are also emerging rapidly as potentially powerful tools for materials selection. A 1995 report by the National Materials Advisory Board ( Ref 1 ) presented a conceptual architecture of a computer-aided materials selection expert system...
Abstract
This article provides a description of various systems for computer-aided materials selection that deals primarily with promising prototypes that have emerged for various applications. These include expert systems, quantitative selection systems, qualitative and experiential selection systems, and object-oriented systems.
1