Skip Nav Destination
Close Modal
Search Results for
energy-dispersive X-ray spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 282 Search Results for
energy-dispersive X-ray spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 106 Representative energy-dispersive x-ray spectroscopy spectrum of spherical inclusions analyzed from Fig. 105
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 108 Energy-dispersive x-ray spectroscopy spectrum from an area of the defect shown in Fig. 107
More
Image
in Characterization of Plastics in Failure Analysis
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 5 Typical energy-dispersive x-ray spectroscopy spectrum showing absorption features indicative of unique elements and the quantitation of those elements. cps, counts per second
More
Image
in Analysis and Prevention of Environmental- and Corrosion-Related Failures
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 21 Energy-dispersive x-ray spectroscopy spectrum of a bungee cord fractured surface showing fillers to be calcium carbonate type
More
Image
Published: 01 June 2012
Fig. 13 Energy-dispersive x-ray spectroscopy spectrum for analysis of the slag remnants remaining after electropolishing a laser-cut Nitinol stent (analyzed area is shown in Fig. 7b ). The oxygen peak confirmed that slag from laser cutting was not thoroughly removed.
More
Image
Published: 01 June 2012
Fig. 14 Energy-dispersive x-ray spectroscopy analysis results for fine nonmetallic inclusions in Nitinol wire material
More
Image
Published: 01 January 2002
Fig. 46 Energy-dispersive spectroscopy x-ray spectrum from a shiny metallic particle in a secondary crack, as shown in Fig. 42
More
Image
Published: 15 January 2021
Fig. 46 Energy-dispersive spectroscopy x-ray spectrum from a shiny metallic particle in a secondary crack, as shown in Fig. 42
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... structure at atomic resolution Optical microscopy Reflected light is used to generate a magnified image. Macroscopic surface structure details Chemical identity and composition techniques Energy dispersive x-ray spectroscopy (EDS) Incident electron beam generates emission of x-rays...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. atomic force...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006063
EISBN: 978-1-62708-172-6
... calorimetry, scanning electron microscopy-energy dispersive X-ray spectroscopy, chromatography, and electrochemical impedance spectroscopy. Test cabinets and standard test environments for laboratory analysis are reviewed. The article describes non-standard simulation testing and case studies of simulated...
Abstract
This article provides an overview of common analytical tools used as part of the process of providing practical information regarding the causes of a coating problem or failure. The common analytical tools include Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy-energy dispersive X-ray spectroscopy, chromatography, and electrochemical impedance spectroscopy. Test cabinets and standard test environments for laboratory analysis are reviewed. The article describes non-standard simulation testing and case studies of simulated environments for coating failure analysis.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Image
Published: 15 December 2019
Fig. 1 Flow charts of common techniques for characterization of metals and alloys. AES: Auger electron spectroscopy; AFM: atomic force microscopy; COMB: high-temperature combustion; EDS: energy-dispersive x-ray spectroscopy; EFG: elemental and functional group analysis; EPMA: electron probe x
More
Image
Published: 01 August 2013
Fig. 22 Quality-control procedures for powders. EDAX, energy-dispersive x-ray spectroscopy; XRD, x-ray diffraction; TEM, transmission electron microscopy
More
Image
Published: 15 January 2021
Fig. 33 (a) Ti-6Al-4V with tungsten inclusion. Kroll’s etch. (b) Energy-dispersive x-ray spectroscopy graph of tungsten inclusion
More
Image
Published: 30 September 2015
Fig. 27 Resolved image acquired by scanning electron microscopy-energy dispersive x-ray spectroscopy, with associated spectrum. Courtesy of KTA-Tator, Inc.
More
Image
Published: 30 September 2015
Fig. 28 Spectrum obtained using scanning electron microscopy-energy dispersive x-ray spectroscopy, with element identification. Courtesy of KTA-Tator, Inc.
More
Image
Published: 01 June 2024
Fig. 22 Dezincification of a brass alloy component adjacent to a stress-corrosion crack as observed (a) visually and (b) in a metallographic section. A lower concentration of zinc was observed by energy-dispersive x-ray spectroscopy in (d) an affected area compared to (c) an unaffected area
More
Image
in Laser Powder-Bed Fusion Additive Manufacturing of Structural Automotive Components
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 4 Transmission electron micrographs for (a) peak-aged FeCu and (d) peak-aged FeCu+. Red arrows point toward spherical oxide particles. Energy-dispersive x-ray spectroscopy maps of copper (b and e) and of carbon (c and f) for peak-aged FeCu and peak-aged FeCu+, respectively. Source: Ref
More
Image
Published: 01 June 2024
Fig. 21 Fractured stainless steel wires from a braided-wire water connector. (a) Before cleaning, backscattered electron compositional mode. Original magnification: 25×. (b) After cleaning, secondary electron mode. Original magnification: 35×. (c) Energy-dispersive x-ray spectroscopy spectrum
More
1