Skip Nav Destination
Close Modal
Search Results for
energy-dispersive X-ray spectrometers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107 Search Results for
energy-dispersive X-ray spectrometers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1986
Fig. 3 Schematic diagram of the detector of an energy-dispersive x-ray spectrometer. Source: Ref 9
More
Image
Published: 01 January 1986
Fig. 4 Schematic diagram of a complete energy-dispersive x-ray spectrometer. Various pulse processing functions and the multichannel analyzer are shown. Source: Ref 9
More
Image
Published: 01 January 2002
Fig. 6 Schematic of a complete energy-dispersive x-ray spectrometer used in electron-probe x-ray microanalysis. Various pulse processing functions and the multichannel analyzer are shown. FET, field effect transistor
More
Image
Published: 15 December 2019
Fig. 13 Schematic diagram of a complete energy-dispersive x-ray spectrometer. Various pulse-processing functions and the multichannel analyzer (MCA) are shown. FET, field-effect transistor
More
Image
Published: 15 January 2021
Fig. 2 Schematic of a silicon-lithium energy-dispersive x-ray spectrometer. Courtesy of Thermo Fisher Scientific
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001733
EISBN: 978-1-62708-178-8
... Abstract This article provides an introduction to x-ray spectrometry, and discusses the role of electromagnetic radiation, x-ray emission, and x-ray absorption. It focuses on the instrumentation of wavelength-dispersive x-ray spectrometers, and energy dispersive x-ray spectrometers (EDS...
Abstract
This article provides an introduction to x-ray spectrometry, and discusses the role of electromagnetic radiation, x-ray emission, and x-ray absorption. It focuses on the instrumentation of wavelength-dispersive x-ray spectrometers, and energy dispersive x-ray spectrometers (EDS) that comprise x-ray tubes, the analyzing system, and detectors. The fundamentals of EDS operation are described. The article also provides useful information on preparation of various samples, explaining the qualitative and quantitative analyses of EDS. It reviews the applications of the x-ray spectrometry.
Image
Published: 15 December 2019
Fig. 14 Schematic diagrams of silicon-lithium semiconductor x-ray detector used in an energy-dispersive x-ray spectrometer
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Image
Published: 01 June 2012
Fig. 4 Schematic of the electron beam interaction with the sample for scanning electron microscopy and energy-dispersive x-ray spectrometer analysis
More
Image
Published: 01 June 2024
Fig. 12 In situ plasma cleaner in an electron beam instrument. EDS, energy-dispersive x-ray spectrometer. Source: XEI Scientific
More
Image
Published: 15 December 2019
Fig. 7 Principle of the semiconductor silicon drift detector energy dispersive x-ray spectrometer (SDD-EDS) with the spectrum of YBa 2 Cu 3 O 7 -0.4wt%Al
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006645
EISBN: 978-1-62708-213-6
...-dispersive spectrometer (WDS) and energy-dispersive spectrometer (EDS). This is followed by a discussion on the mechanism and effects of X-ray radiation, X-ray emission, and X-ray absorption. The article then discusses components used, operation, and applications of WDS and EDS. Some of the factors...
Abstract
This article provides a detailed account of X-ray spectroscopy used for elemental identification and determination. It begins with an overview of the operating principles of X-ray fluorescence (XRF) spectrometer, as well as a comparison of the operating principles of wavelength-dispersive spectrometer (WDS) and energy-dispersive spectrometer (EDS). This is followed by a discussion on the mechanism and effects of X-ray radiation, X-ray emission, and X-ray absorption. The article then discusses components used, operation, and applications of WDS and EDS. Some of the factors and processes involved in sample preparation for XRF analysis are also included. The article further provides information on the practical procedure for and the applications of WDS and EDS qualitative and quantitative analyses.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001768
EISBN: 978-1-62708-178-8
... microanalysis energy-dispersive X-ray spectrometers microbeam analysis qualitative analysis quantitative analysis scanning electron microscopes wavelength-dispersive X-ray fluorescence spectroscopy Overview Introduction Metallurgy has for many years combined chemical analysis on a macroscopic...
Abstract
Electron probe microanalysis (EPMA) makes it possible to combine structural and compositional analysis in one operation. This article describes the basic concepts of microanalysis and the processing of EPMA that involves the measurement of the characteristic X-rays emitted from a microscopic part of a solid specimen bombarded by a beam of accelerated electrons. It provides information on the various aspects of energy-dispersive spectrometry (EDS) and wavelength-dispersive spectrometry (WDS), and elucidates the qualitative analysis of the major constituents of EDS and WDS. The article includes information on the analog and digital compositional mapping of elemental distribution, and describes the strengths and weaknesses of WDS and EDS spectrometers in X-ray mapping. It also outlines the application of EPMA for solving various problems in materials science.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... above. Wavelength Dispersive Versus Energy Dispersive Detectors The x-rays emitted from the sample in an XRF spectrometer are detected and analyzed in one of two ways: wavelength dispersive or energy dispersive analysis. In wavelength dispersive instruments, the emitted x-ray beam is directed...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
...-dispersive x-ray spectrometer with the SEM. The SEM generates a beam of incident electrons in an electron column above the sample chamber. The electrons are typically produced by a thermal emission source, such as a heated tungsten filament, or a field-emission cathode. The energy of the incident...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Image
Published: 15 December 2019
Fig. 2 Superimposed spectra of BaTiO 3 obtained from energy-dispersive spectrometer (EDS) and wavelength-dispersive spectrometer (WDS) systems, where the WDS spectrum is replotted on the energy scale rather than wavelength. X-ray detection in WDS systems is based on Bragg’s law
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006638
EISBN: 978-1-62708-213-6
... of hydrogen and helium, which do not produce characteristic x-rays, all elements of the periodic table can be measured. Generally referred to as electron probe microanalysis (EPMA), the technique is typically performed in a scanning electron microscope equipped with an energy dispersive x-ray spectrometer...
Abstract
This article is a detailed account of the principles of electron-excited X-ray microanalysis. It begins by discussing the physical basis of electron-excited X-ray microanalysis and the advantages and limitations of energy dispersive spectrometry (EDS) and wavelength dispersive spectrometry for electron probe microanalysis. Key concepts for performing qualitative analysis and quantitative analysis by electron-excited X-ray spectrometry are then presented. Several sources that lead to measurement uncertainties in the k-ratio/matrix corrections protocol are provided, along with the significance of the raw analytical total. Sections on accuracy of the standards-based k-ratio/matrix corrections protocol with EDS and processes of analysis when severe peak overlap occurs are also included. The article provides information on low-atomic-number elements, iterative qualitative-quantitative analysis for complex compositions, and significance of standardless analysis in the EDS software. It ends with a section on the processes involved in elemental mapping for major and minor constituents.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006102
EISBN: 978-1-62708-175-7
... if it is equipped with an energy-dispersive x-ray spectrometer (EDS). Compared to optical scopes, the SEM provides high-resolution images and can present the details of particle morphology ( Fig. 1 ). This article provides brief examples of particle image analysis on metal powders used in the PM industry. Fig...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... of detector was developed that, with no moving parts, could simultaneously count and determine the energy of the x-rays ( Fig. 6 ). These detectors are the ones used for EDS modules on SEM devices. Fig. 5 Schematic diagram of the components of a wavelength-dispersive x-ray spectrometer Fig. 6...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
... and scanning Auger microscope with regard to top surface analysis. Comparison summary of signal used in scanning electron beam instruments Table 3 Comparison summary of signal used in scanning electron beam instruments Signal type Type Energy Source Use X-ray Characteristic (fluorescent...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
1