Skip Nav Destination
Close Modal
Search Results for
energy sources
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2438
Search Results for energy sources
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... Abstract Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001332
EISBN: 978-1-62708-173-3
... Abstract Welding and joining processes are essential for the development of virtually every manufactured product. This article discusses the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles. It reviews the role of energy-source intensity...
Abstract
Welding and joining processes are essential for the development of virtually every manufactured product. This article discusses the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles. It reviews the role of energy-source intensity and the width of the heat-affected zone in fusion welding processes. The article contains figures from which the properties of any heat source can be estimated readily.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... Abstract Batteries and fuel cells are popular forms of portable electrical energy sources. This article discusses the operation and corrosion problems inherent in batteries and fuel cells. Batteries are classified into two groups: primary or nonrechargeable batteries and secondary...
Abstract
Batteries and fuel cells are popular forms of portable electrical energy sources. This article discusses the operation and corrosion problems inherent in batteries and fuel cells. Batteries are classified into two groups: primary or nonrechargeable batteries and secondary or rechargeable batteries. Fuel cells are classified into five types: phosphoric acid fuel cell (PAFC), solid polymer electrolyte fuel cell, alkaline electrolyte fuel cell, molten carbonate fuel cell (MCFC), and solid oxide fuel cell. The article presents reactions that occur during charging and discharging of lead-acid batteries, PAFCs, and MCFCs.
Image
in Thermal Spray Coatings for Friction and Wear Control
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 3 Thermal spray systems consist of an energy source, feedstock delivery mechanism, and other ancillary components. Source: Ref 2
More
Image
in Thermal Spray Coatings for Friction and Wear Control
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 6 Thermal-spray process classification by (a) energy source, and (b) particle temperature and velocity. Source: Ref 2 , 10
More
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 2 Effect of energy source on deposition rate and feature quality for the directed-energy deposition (DED) and powder-bed fusion (PBF) processes. Source: Ref 24
More
Image
Published: 15 June 2020
Fig. 1 Effect of energy source on deposition rate and feature quality for the directed-energy deposition (DED) process. The regime typically defined for the powder-bed fusion (PBF) process (left side of graph) is shown for comparison.
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... Abstract This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... Abstract Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005130
EISBN: 978-1-62708-186-3
... Abstract This article begins with a discussion on the energy sources used for thermal forming. These include electric induction coil, gas flame, plasma torch, and laser beam. The article discusses the mechanisms of forming and different modes of deformation. It describes the effect of process...
Abstract
This article begins with a discussion on the energy sources used for thermal forming. These include electric induction coil, gas flame, plasma torch, and laser beam. The article discusses the mechanisms of forming and different modes of deformation. It describes the effect of process and material parameters on forming and the effect of metallurgical changes on mechanical property and microstructure of stainless steel. The article concludes with information on the applications of thermal forming.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001762
EISBN: 978-1-62708-178-8
... it can be used. It begins with a discussion on the principles of diffraction and scattering and the effectiveness of x-ray, neutron, and electron energy sources for different types of measurements. It provides information on data collection and reduction and explains how to create atomic distribution...
Abstract
The diffraction pattern of any material contains structural and chemical property information that can be extracted using radial distribution function analysis. This article provides an introduction to the technique and presents several examples highlighting various ways in which it can be used. It begins with a discussion on the principles of diffraction and scattering and the effectiveness of x-ray, neutron, and electron energy sources for different types of measurements. It provides information on data collection and reduction and explains how to create atomic distribution plots from intensity and scattering angle data. The article also presents application parameters for defining short distances and background intensity and describes a procedure for generating pair distribution functions.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005619
EISBN: 978-1-62708-174-0
... Abstract Ultrasonic welding (UW), as a solid-state joining process, uses an ultrasonic energy source and pressure to induce oscillating shears between the faying surfaces to produce metallurgical bonds between a wide range of metal sheets and wires. This article reviews the models...
Abstract
Ultrasonic welding (UW), as a solid-state joining process, uses an ultrasonic energy source and pressure to induce oscillating shears between the faying surfaces to produce metallurgical bonds between a wide range of metal sheets and wires. This article reviews the models of the ultrasonic welding with an emphasis on governing equations, material behavior, and heat generation of the process. It discusses the resulting factors, namely, vibration, friction, temperature, and plastic deformation as well as the bonding strength and its mechanism.
Image
Published: 01 January 1986
Image
Published: 01 January 1986
Image
Published: 01 December 2008
Image
in Properties of Pure Metals
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Friction, Lubrication, and Wear of Internal Combustion Engine Parts
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Image
Published: 30 August 2021
Fig. 14 Impact fracture energy of copper-tin intermetallic compounds. Source: Ref 26 . © 2013 IEEE. Reprinted, with permission, from IEEE Proceedings
More
Image
Published: 01 January 1993
Image
Published: 01 January 1993
1