Skip Nav Destination
Close Modal
By
ASM International Materials Life-Cycle Analysis Committee, Hans H. Portisch, Steven B. Young, John L. Sullivan, Matthias Harsch ...
Search Results for
energy flow
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1757
Search Results for energy flow
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Energy and Environmental Aspects of Induction Melting Processes
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
in Energy and Environmental Aspects of Induction Melting Processes
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
in Energy and Environmental Aspects of Induction Melting Processes
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
in Computational Modeling of Induction Melting and Experimental Verification
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 24 Turbulent flow energy spectrum for energy containing large eddies, inertial subrange, and energy dissipation
More
Image
Published: 01 January 1986
Fig. 4 The flow of x-ray energy in crystals of different thicknesses. (a) Borrmann fan in a thin crystal. (b) Fan with reduced effective width in a thick crystal. P is the primary beam defined by slits S; k 0 and k h are the outermost wave vectors; R 0 and R h , the transmitted
More
Image
in Computational Modeling of Induction Melting and Experimental Verification
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 26 Parts of the full spectrum of turbulent flow energy resolved and/or modeled by Reynolds-averaged Navier-Stokes (RANS) equations, large-eddy simulation (LES) models, and direct numerical simulation (DNS)
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
..., and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005925
EISBN: 978-1-62708-166-5
... control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation...
Abstract
Temperature control in heat treating is of paramount importance in maintaining the quality and achieving the desired metallurgical results. This article provides a detailed account of the factors affecting temperature control in heat treating furnaces, with information on temperature control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation thermometers fall under the noncontact type. The article describes two types of instrumentation used in heat treating: field test instruments for temperature-uniformity surveys and system-accuracy tests; and controlling, monitoring, and recording instruments for digital instrumentation.
Image
Published: 01 January 2005
Fig. 5 The three basic concepts for high-energy-rate forging. (a) Ram and inner frame machine. (b) Two ram machine. (c) Controlled-energy-flow machine. Triggering and expansion of gas in the firing chamber cause the upper and lower rams to move toward each other at high speed. An outer frame
More
Image
Published: 01 December 1998
Fig. 4 Three types of machines for high-energy-rate forging. (a) Ram-and-inner-frame machine. (b) Two-ram machine. (c) Controlled-energy-flow machine. Triggering and expansion of gas in the firing chamber cause the upper and lower rams to move toward each other at high velocity. An outer frame
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... (without holding operation losses) and is much lower than for the cupola furnace, but due to electricity as the energy source, the energy costs are comparable or even higher. Figure 5 shows the energy flow for the melting of cast iron in a modern medium-frequency ICF. The coil accounts for the largest...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... beam microwelding fluid flow heat flow high energy density beam laser beam laser beam microwelding laser droplet welding laser spike welding melting microjoining microjoints microwelds postweld metrology SHADOW welding solidification MICROJOINING with high energy density beams...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002425
EISBN: 978-1-62708-194-8
... Listing and Black Box Modeling Using the activity diagram and the list of customer needs, a function structure for the product can be formulated ( Fig. 6 ). A function structure is defined as an input-output model that maps energy, material, and signal flows to a transformed and desired state...
Abstract
A concise and quantified specification is essential to developing suitable product concepts. This article describes an integrated set of structured methods for identifying the customer population for the product and developing a representation of feature demands. The structured methods include design task probing, customer needs analysis, functional decomposition, and competitive benchmarking for directly mapping customer statements to functional requirements.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005587
EISBN: 978-1-62708-174-0
..., microstructure evaluation, thermal stress analysis, and fluid flow in the weld pool. energy transfer fluid flow heat transfer microstructure evaluation modeling welds thermal stress analysis THE DESIGN OF A STRUCTURE that achieves its highest performance levels with the least chance of failure...
Abstract
This article is a comprehensive collection of formulas and numerical solutions, addressing many heat-transfer scenarios encountered in welds. It provides detailed explanations and dimensioned drawings in order to discuss the geometry of weld models, transfer of energy and heat in welds, microstructure evaluation, thermal stress analysis, and fluid flow in the weld pool.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... transfer flow and thermodynamics physical shape THE STEAM TURBINE (see Fig. 1 ) is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. As the steam expands, it acquires high velocity and exerts force on the turbine blades. Turbines range in size...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004013
EISBN: 978-1-62708-185-6
..., billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process...
Abstract
Coextrusion is defined as the simultaneous extrusion of two or more metals to form an integral product that can be carried out using conventional extrusion or drawing equipment at a temperature appropriate to the metal system being formed. This article discusses the applications, billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process variables for which sound extrusions can be obtained. The article concludes with a discussion on the state-of-the-art of coextrusion that assists in developing process models, which accurately describe both the macroscopic and microscopic aspects of a process.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005869
EISBN: 978-1-62708-167-2
... Abstract Induction hardening of geared parts used in aeronautic and aerospace industry is an important technology because of its one-piece flow, repeatability, energy efficiency, and tighter control of surface distortion than conventional carburizing. This article describes the requirements...
Abstract
Induction hardening of geared parts used in aeronautic and aerospace industry is an important technology because of its one-piece flow, repeatability, energy efficiency, and tighter control of surface distortion than conventional carburizing. This article describes the requirements and characteristics of induction hardening of transmission parts, such as bearings, shafts, and different types of gears, including bevel gears, spur wheel gears, helical gears, and splines. It provides information on process monitoring and the economic aspects of induction hardening.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005450
EISBN: 978-1-62708-196-2
..., and energy equation for solving various problems related to fluid dynamics. fluid dynamics equation fluid mechanics continuity equation momentum equation energy equation boundary layer flow dimensional analysis fluid motion fluid statics A FLUID cannot resist shear stress by static...
Abstract
This article is a comprehensive collection of fluid dynamic equations for properties of fluids, fluid statics, fluid motion, dimensional analysis, and boundary layer flow. It presents equations for analyzing problems in fluid mechanics, continuity equation, momentum equation, and energy equation for solving various problems related to fluid dynamics.
Book Chapter
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002433
EISBN: 978-1-62708-194-8
... improvement possibilities of the environmental behavior of systems under consideration by designers and manufacturers. The whole life cycle of a system has to be considered. Therefore it is necessary to systematically collect and interpret material and energy flows for all relevant main and auxiliary...
Abstract
Life-cycle engineering is a part-, system-, or process-related tool for the investigation of environmental parameters based on technical and economic measures. This article focuses on life-cycle engineering as a method for evaluating impacts. It describes the four steps of life-cycle analysis, namely, goal definition and scoping, inventory analysis, impact assessment and interpretation, and improvement analysis. The article discusses the applications of life-cycle analysis results and presents a case history of life-cycle analysis of an automobile fender.
1