Skip Nav Destination
Close Modal
By
Egbert Baake, Bernard Nacke
By
Christian Krause, Fabio Biasutti
By
Victor W. Wong, Simon C. Tung
By
David White, Martin Reeves, Paul Campbell, David Neff
By
Frank Schoofs, Fernando Garcia, Ole Geisen
By
John Stringer
By
David Neff, Geoffrey Sigworth, Rafael Gallo
Search Results for
energy efficiency
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1338
Search Results for energy efficiency
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Energy efficiency, as a function of exhaust temperature, for regenerative b...
Available to PurchasePublished: 30 September 2014
Fig. 31 Energy efficiency, as a function of exhaust temperature, for regenerative burner, recuperative burner, and central heat exchanger
More
Image
Effect of tube voltage or electron energy on the efficiency of energy conve...
Available to PurchasePublished: 01 August 2018
Fig. 9 Effect of tube voltage or electron energy on the efficiency of energy conversion in the target of an x-ray source
More
Book Chapter
Energy and Environmental Aspects of Induction Melting Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... Abstract Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Book Chapter
Induction Hardening for the Aeronautic and Aerospace Industry
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005869
EISBN: 978-1-62708-167-2
... Abstract Induction hardening of geared parts used in aeronautic and aerospace industry is an important technology because of its one-piece flow, repeatability, energy efficiency, and tighter control of surface distortion than conventional carburizing. This article describes the requirements...
Abstract
Induction hardening of geared parts used in aeronautic and aerospace industry is an important technology because of its one-piece flow, repeatability, energy efficiency, and tighter control of surface distortion than conventional carburizing. This article describes the requirements and characteristics of induction hardening of transmission parts, such as bearings, shafts, and different types of gears, including bevel gears, spur wheel gears, helical gears, and splines. It provides information on process monitoring and the economic aspects of induction hardening.
Book Chapter
Friction, Lubrication, and Wear of Internal Combustion Engine Parts
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006427
EISBN: 978-1-62708-192-4
... Abstract This article focuses on friction, lubrication, and wear of internal combustion engine parts, improvements in which provide important gains in energy efficiency, performance, and longevity of the internal combustion (IC) engine systems. It discusses the types, component materials...
Abstract
This article focuses on friction, lubrication, and wear of internal combustion engine parts, improvements in which provide important gains in energy efficiency, performance, and longevity of the internal combustion (IC) engine systems. It discusses the types, component materials, and Friction and Wear Control of IC engine. The article explains the process of friction reduction by surface textures or coatings. It provides information on surface hardening of iron and steel, which is commonly employed for engine and powertrain components such as crankshafts, cams, and cylinder liners. The article also discusses advanced surface engineering technologies, such as diamondlike carbon coatings and surface texture technology. Information on thermal-spray methods that have led to improvements in engine components is also provided. The article describes IC engine-components wear, namely, piston assembly wear, valvetrain wear, cylinder-bore wear, and engine bearing wear. It concludes with information on inlet valve and seat wear of IC engine.
Book Chapter
Reverberatory and Stack Furnaces
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005350
EISBN: 978-1-62708-187-0
..., these furnaces are some of the easiest to clean and are much more efficient than just a few years ago. Advances in insulating back-up linings have made these furnaces cooler to work around and more energy efficient than ever before. Many of the newer furnaces can reach an energy efficiency capability of 1250 Btu...
Abstract
This article illustrates the basic components of dry and wet hearth reverberatory furnaces. It discusses stack melters that are used for aluminum metal casting, as they are efficient in sealing the furnace and using the flue gases to preheat the charge materials. The article describes the various factors for improving and maintaining furnace efficiencies. It explains the benefits of circulating molten metal in reverberatory furnaces and circulation methods.
Book Chapter
Heating and Holding Times
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005992
EISBN: 978-1-62708-166-5
... furnaces for tempering operations typically ranging from 100 to 750 °C (212 to 1380 °F) ( see Table 2 ). Fluidized bed furnaces are not only more energy-efficient than convection furnaces but also exhibit heat transfer efficiency similar to salt baths and lead pots, without the health and environmental...
Abstract
Heating time and holding time refer, respectively, to the time required to bring a part to temperature and the time a part is held at the required heat-treatment temperature. This article provides information on heating times and holding times with different types of furnace systems during steel hardening and tempering.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006356
EISBN: 978-1-62708-192-4
... discussed. High-performance PAOs are usually manufactured at a higher cost compared to mineral oils. Often it is best to consider the overall cost-benefit relationship when formulating lubricants, and this cost-benefit equation should contain factors for energy efficiency, performance benefits, oil change...
Abstract
This article presents a brief discussion on the main applications for low- and high-viscosity polyalphaolefins (PAOs) and highlights key areas of interest and shows why PAOs are used in these applications. It discusses the physical properties of passenger car motor oils (PCMOs) based on or containing PAOs. The properties include Noack volatility and pour point. The article also discusses the properties and applications of heavy-duty engine oil (HDEO), industrial lubricants, food-grade lubricants, greases, transportation gear oils, compressor oils, hydraulic fluids, and transmission fluids.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005708
EISBN: 978-1-62708-171-9
... Abstract The use of renewable energy has grown strongly in all end-use sectors such as power, heat, and transport. This article describes thermal spray applications that improve efficiency, lower maintenance costs, and prolong operational life in the renewable energy technologies, including...
Abstract
The use of renewable energy has grown strongly in all end-use sectors such as power, heat, and transport. This article describes thermal spray applications that improve efficiency, lower maintenance costs, and prolong operational life in the renewable energy technologies, including wind power, hydro power, biomass and biofuels, solar energy, and fuel cells.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... Abstract Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... Abstract Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Book Chapter
Additive Manufacturing in the Nuclear and Wind Energy Sectors
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007019
EISBN: 978-1-62708-439-0
... industries. Although AM technology has developed significantly in recent years, there is a bigger role that AM could play, and it is the responsibility of the wind energy industry to invest in the technology to improve efficiency and competitiveness ( Ref 18 ). However, any industry has special...
Abstract
Nuclear energy harnesses the power of atomic interactions, whether through the fission of large nuclei or the fusion of light elements. Additive manufacturing (AM) can play several roles in this sector and is actively being researched and applied, although challenges remain. This article provides a discussion of the opportunities, challenges, and example use cases of AM in the nuclear and wind energy sectors.
Book Chapter
Cast Iron Melting Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... the highest ductility, acceptable limits for these residual alloys are much lower. Energy Usage <xref rid="a0006337-ref5" ref-type="bibr">(Ref 5)</xref> The energy efficiency of cupola melting ranges from 40 to over 70%, depending on technological practices to improve energy efficiency and productivity...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... Abstract The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Book Chapter
Introduction to Corrosion in Fossil and Alternative Fuel Industries
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004150
EISBN: 978-1-62708-184-9
... Abstract The primary fossil fuels are generally defined as coal, oil, natural gas, tar sands, and shale oil. This article discusses the characteristics and the types of fuels used in fossil and fuel industries. It describes the energy conversion in fuels and outlines the efficiency of a heat...
Abstract
The primary fossil fuels are generally defined as coal, oil, natural gas, tar sands, and shale oil. This article discusses the characteristics and the types of fuels used in fossil and fuel industries. It describes the energy conversion in fuels and outlines the efficiency of a heat engine with the help of the Carnot equation.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0009211
EISBN: 978-1-62708-194-8
... is much less in solid free-form fabrication (SFF) processes than in conventional manufacturing. Kellens et al. ( Ref 47 ) examined the energy efficiencies of the selective laser sintering and the selective laser melting processes. The methodology employed was the Cooperative Effort on Process...
Abstract
This article reviews the emerging manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free-form fabrication, three-dimensional (3-D) printing, and so on. It provides a broad contextual overview of metallic AM. The article focuses on the mechanical properties of AM-processed Ti-6Al-4V, IN-625, and IN-718. The development of closed-loop, real-time, sensing, and control systems is essential to the qualification and advancement of AM. This involves the development of coupled process-microstructural models, sensor technology, and control methods and algorithms. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts on demand while offering the potential to reduce cost, energy consumption, and carbon footprint. The article explores the materials science, processes, and business considerations associated with achieving these performance gains. It concludes that a paradigm shift is required to fully exploit AM potential.
Book Chapter
Melting and Melt Treatment of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006535
EISBN: 978-1-62708-207-5
... multiple operations located within the shop. By using double-end clean-out and preheat hearths, these furnaces are some of the easiest to clean and are much more efficient than just a few years ago. Advances in insulating back-up linings have made these furnaces cooler to work around and more energy...
Abstract
There are a wide variety of furnace types and designs for melting aluminum. This article discusses the various types of furnaces, including gas reverberatory furnaces, crucible furnaces, and induction melting furnaces. It describes the classification of solid fluxes: cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article reviews the basic considerations in proper flux selection and fluxing practices. It explains the basic principles of degassing and discusses the degassing of wrought aluminum alloys. The article describes filtration in wrought aluminum production and in shape casting. It also reviews grain refinement in aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article concludes with a discussion on aluminum-silicon modification.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
... or an open cascade flow. Cupolas are highly energy-efficient melting furnaces for cast iron. However, they produce large quantities of particulate and exhaust gases. These emission products must be removed from the gases discharged to the atmosphere, and the equipment required to accomplish...
Abstract
The melting process often includes refining and treating the metal. The choice of which type of melting to use depends on a number of factors: type of alloy being melted, the local cost of electric power, and local environmental regulations. This article discusses the principles, furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed in the article.
Book Chapter
History and Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005834
EISBN: 978-1-62708-167-2
... more energy efficient and inherently more environmentally friendly than most other heat sources including gas fired furnaces, salt and lead baths, carburizing systems, and nitriding systems ( Ref 1 ). Other advantages of induction heating include: Quick heating: Development of heat within...
Abstract
Electromagnetic induction is a way to heat electrically conductive materials such as metals. This article provides a brief history of electromagnetic induction and the development of induction heating technology. It explores various applications such as heating prior to metalworking, heat treating, melting, joining (welding, brazing/soldering, and shrink fitting), coating, paint curing, adhesive bonding, and zone refining of semiconductors. The article also discusses the advantages of induction heating.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005198
EISBN: 978-1-62708-187-0
... and in a wide variety of traditional and specialized shapes. There is no direct impingement of the flame on the metal, and the heat loss to the outside is limited by the refractory walls. However, the energy efficiency of the crucible furnace can be low (7 to 19%), with over 60% of the heat loss attributed...
Abstract
This article discusses the design parameters, operation, characteristics, properties, and advantages of various types of crucible furnaces, such as stationary, tilting, and movable furnaces. It also provides information on the application of the crucible furnaces.
1