1-20 of 249 Search Results for

energy dispersive X-ray spectroscopy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2012
Fig. 13 Energy-dispersive x-ray spectroscopy spectrum for analysis of the slag remnants remaining after electropolishing a laser-cut Nitinol stent (analyzed area is shown in Fig. 7b ). The oxygen peak confirmed that slag from laser cutting was not thoroughly removed. More
Image
Published: 01 June 2012
Fig. 14 Energy-dispersive x-ray spectroscopy analysis results for fine nonmetallic inclusions in Nitinol wire material More
Image
Published: 30 August 2021
Fig. 106 Representative energy-dispersive x-ray spectroscopy spectrum of spherical inclusions analyzed from Fig. 105 More
Image
Published: 30 August 2021
Fig. 108 Energy-dispersive x-ray spectroscopy spectrum from an area of the defect shown in Fig. 107 More
Image
Published: 15 January 2021
Fig. 21 Energy-dispersive x-ray spectroscopy spectrum of a bungee cord fractured surface showing fillers to be calcium carbonate type More
Image
Published: 01 January 2002
Fig. 46 Energy-dispersive spectroscopy x-ray spectrum from a shiny metallic particle in a secondary crack, as shown in Fig. 42 More
Image
Published: 15 January 2021
Fig. 46 Energy-dispersive spectroscopy x-ray spectrum from a shiny metallic particle in a secondary crack, as shown in Fig. 42 More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... structure at atomic resolution Optical microscopy Reflected light is used to generate a magnified image. Macroscopic surface structure details Chemical identity and composition techniques Energy dispersive x-ray spectroscopy (EDS) Incident electron beam generates emission of x-rays...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. atomic force...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006063
EISBN: 978-1-62708-172-6
... calorimetry, scanning electron microscopy-energy dispersive X-ray spectroscopy, chromatography, and electrochemical impedance spectroscopy. Test cabinets and standard test environments for laboratory analysis are reviewed. The article describes non-standard simulation testing and case studies of simulated...
Image
Published: 01 August 2013
Fig. 22 Quality-control procedures for powders. EDAX, energy-dispersive x-ray spectroscopy; XRD, x-ray diffraction; TEM, transmission electron microscopy More
Image
Published: 15 December 2019
Fig. 1 Flow charts of common techniques for characterization of metals and alloys. AES: Auger electron spectroscopy; AFM: atomic force microscopy; COMB: high-temperature combustion; EDS: energy-dispersive x-ray spectroscopy; EFG: elemental and functional group analysis; EPMA: electron probe x More
Image
Published: 15 January 2021
Fig. 33 (a) Ti-6Al-4V with tungsten inclusion. Kroll’s etch. (b) Energy-dispersive x-ray spectroscopy graph of tungsten inclusion More
Image
Published: 30 September 2015
Fig. 27 Resolved image acquired by scanning electron microscopy-energy dispersive x-ray spectroscopy, with associated spectrum. Courtesy of KTA-Tator, Inc. More
Image
Published: 30 September 2015
Fig. 28 Spectrum obtained using scanning electron microscopy-energy dispersive x-ray spectroscopy, with element identification. Courtesy of KTA-Tator, Inc. More
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... the effect of hydrogen on ductility ( Fig. 639 ) and a drawing of a compression hip screw ( Fig. 670 ). (d) Total includes both iron-based and nickel-base superalloys. (e) Total includes two sulfur dot maps obtained by energy-dispersive x-ray spectroscopy ( Fig. 825 and 827 ). (f) Total...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000615
EISBN: 978-1-62708-181-8
... : Backscattered electron image of ENiCrFe-3 weld metal showing severe interdendritic attack. SEM, 65×. Fig. 825 : Sulfur map of field in Fig. 824 reveals high level of the element in interdendritic regions. Technique used was energy-dispersive x-ray spectroscopy (EDS). 65×. Fig. 826 : Backscattered electron...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... group analysis • … • … • • • • … … • • … … … Energy-dispersive x-ray spectroscopy N … … … N N … … … N … … … … … Fourier transform infrared spectroscopy N D, • • … • N N • • • • • … • … Gas chromatography … … V … V V V V V … V V V N,S...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... the sample under the beam. Limitations Elements with low atomic numbers produce very few x-rays and are difficult to detect or quantify, particularly in energy dispersive systems. Wavelength dispersive instruments can go down to atomic number 5 (boron). Modern energy dispersive systems are limited...