Skip Nav Destination
Close Modal
Search Results for
emissions control
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 703
Search Results for emissions control
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004137
EISBN: 978-1-62708-184-9
... Abstract Corrosion problems and materials selection for emissions control equipment can be difficult because of varied corrosive compounds present and the severe environments encountered. This article discusses the selection of materials for construction of flue gas desulfurization systems...
Abstract
Corrosion problems and materials selection for emissions control equipment can be difficult because of varied corrosive compounds present and the severe environments encountered. This article discusses the selection of materials for construction of flue gas desulfurization systems. It addresses the problems associated with materials for incinerator off-gas treatment equipment. The off-gases can be classified according to their corrosiveness as: industrial chemical, hospital, municipal solid, and sewage sludge. The article provides information on the selection of materials for the three most common types of dust collection equipment used in bulk solids processing, namely, fabric filters, electrostatic precipitators, and wet scrubbers. It also discusses a wide variety of corrosion problems encountered in chemical and pharmaceutical industries.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005197
EISBN: 978-1-62708-187-0
... in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge...
Abstract
In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge materials. The article provides a discussion on the control tests for cupola, including the chill test and mechanical test. It concludes with information on specialized cupolas such as the cokeless cupola and the plasma-fired cupola.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004153
EISBN: 978-1-62708-184-9
... materials selection pitting corrosion pollution control power plant acid attack AIR POLLUTION is a world-wide concern that can adversely affect the environment, structures, and human health. It is a major contributor to acid rain, which occurs as a result of sulfur oxide emissions being converted...
Abstract
This article begins with a discussion on the components and importance of flue gas desulfurization (FGD) technology used in power plant for pollution control. It further discusses the corrosion problems encountered in different operating zones of FGD system and the major forms of corrosive attack encountered in those zones, including crevice corrosion, pitting corrosion, and acid attack. The article concludes with information on the materials selection and design features for minimizing the possibility of corrosion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006413
EISBN: 978-1-62708-192-4
... to design powertrain components and energy-efficient lubricants that achieve optimal fuel economy while retaining engine durability. Effects of Engine Lubricants and Additives Impact on Energy Efficiency and Emission Control Increasing global environmental awareness places new technical mandates...
Abstract
This article addresses the impact of emerging technologies on future lubricant and tribology requirements. The connection between lubricant and tribological requirements is shown by briefly describing basic lubrication and friction processes in major engine components incorporating emerging technologies. The article introduces automotive lubricant development activities and the foundation of future automotive engine-lubricant trends. It discusses how emerging powertrain technology impacts future automotive lubricant and technology requirements, focusing on the effects of engine oils and additives on engine performance to meet powertrain performance requirements. A detailed overview of automotive engine oil performance evaluation methods and specifications, and their impact on the types of advanced lubricants being developed as well as future automotive engine testing requirements, is provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001321
EISBN: 978-1-62708-170-2
.... These areas of “nonattainment” can then be targeted for stricter requirements. The 1990 amendments are the most onerous to industry in that they ban, restrict, and/or rigidly control most chemical emissions from industry. Most of the requirements will be effective between 1995 and 2000, posing both...
Abstract
This article describes selected U.S. environmental statutes and regulations that are pertinent to material surface finishers. It provides information on the applicability, requirements, and permitting conditions of the Clean Air Act, the Resources Conservation and Recovery Act, the Superfund Amendments and Reauthorization Act, and the Clean Water Act.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006454
EISBN: 978-1-62708-190-0
... the instrumentation principles of acoustic emission and reviews the role of acoustic emission in materials studies. The article illustrates the testing of metal-matrix composites (MMCs) using acoustic emission and the use of acoustic emission inspection in production quality control. It concludes with information...
Abstract
Acoustic emission is the generation of stress waves by sudden movement in stressed materials. This article begins with a comparison of acoustic emission from most other nondestructive testing (NDT) methods, and discusses the range of applicability of acoustic emission. It describes the instrumentation principles of acoustic emission and reviews the role of acoustic emission in materials studies. The article illustrates the testing of metal-matrix composites (MMCs) using acoustic emission and the use of acoustic emission inspection in production quality control. It concludes with information on the structural test applications of acoustic emission inspection to find defects and to assess or ensure structural integrity.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005853
EISBN: 978-1-62708-167-2
... should a short wavelength thermometer be used to measure and control the temperature of heated metal parts? Figure 7 shows a curve for the emissivity of unoxidized or nonferrous metals. The upper curve is for oxidized steel and the emissivity is 0.85 for all wavelength thermometers. However, the lower...
Abstract
This article provides an overview of the basic theory of infrared (IR), including emissivity and E slope. It explains how the IR thermometer works, and provides guidance on choosing a thermometer, in particular, deciding between a two-color and a single-wavelength thermometer and installing and maintaining them. The article discusses typical applications of induction heating, and describes how the IR thermometer controls the temperature. While the majority of the article discusses spot thermometers, thermal imagers, which are fast and are used for both research and control of the induction process, are also addressed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005578
EISBN: 978-1-62708-174-0
... alloys, and dissimilar metals using acoustic emission. The article reviews the feasibility of detecting the presence of ferrite during microstructural evolution of friction welding of three austenitic stainless steels: 310, 304, and 255. It also explains the in-process quality control of friction welding...
Abstract
This article lists the system parameters of the friction welding process and describes the four categories of monitoring and control of the manufacturing process. It discusses the monitoring methods of a rotary friction welded sample, for determining in-process quality of ferrous alloys, and dissimilar metals using acoustic emission. The article reviews the feasibility of detecting the presence of ferrite during microstructural evolution of friction welding of three austenitic stainless steels: 310, 304, and 255. It also explains the in-process quality control of friction welding.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003050
EISBN: 978-1-62708-200-6
... pollutants be controlled by the year 2000, using maximum achievable control technology (MACT). Actual limits for the ceramic industries have not been established, but it is thought that MACTs may require more than 90% emission reduction, especially for hydrogen fluoride (HF), which is produced during...
Abstract
Ceramic and glass manufacturers take environmental regulations into consideration during all stages of the product cycle, from research and development to purchasing, processing, end use, and disposal. Ceramic and glass products are finding application in the construction industry and as raw materials for other processes. This article describes the recycling of in-process scrap and industrial wastes (fly ash, red mud, metallurgical waste, and other waste products), and applications of these recycled products. It focuses on environmental regulations such as Resource Conservation and Recovery Act and Clean Air Act. The Clean Air Act requires all states to meet minimum emissions standards for nitrogen-oxygen compounds, volatile organic compounds, and carbon monoxide.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006030
EISBN: 978-1-62708-172-6
... evaluation, hazard controls, Occupational Safety and Health Administration standards, and industry consensus standards. It concludes with a description of containment systems to prevent environmental exposures from industrial paint removal projects. air sampling coating environmental hazards health...
Abstract
This article discusses the occupational health hazards related to industrial protective coating application and removal. It explains the health hazards associated with coating constituents such as lead, cadmium, chromium, arsenic, silica, and asbestos. The article also discusses hazard evaluation, hazard controls, Occupational Safety and Health Administration standards, and industry consensus standards. It concludes with a description of containment systems to prevent environmental exposures from industrial paint removal projects.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005935
EISBN: 978-1-62708-166-5
... an interesting approach to evaluation and, more importantly, to monitoring, controlling, and optimizing the entire quenching process. hardening heat-transfer coefficient quenching sound-emission measurement steel tempering TECHNICAL PROGRESS requires improved quality and more economical...
Abstract
This article focuses on the heat removal stages involved in quenching, and on the experimental setup used for measuring temperature and detecting sound signals with the help of illustrations and curves. The quenching process generates acoustic signals, which are the consequences of the phase transformation of steel and of the boiling process at the interface during the cooling process. The sound-pressure signal is captured by the hydrophone through sound-emission measurements that occur during steel quenching in different quenching media. The analysis of the results offers an interesting approach to evaluation and, more importantly, to monitoring, controlling, and optimizing the entire quenching process.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005925
EISBN: 978-1-62708-166-5
... Abstract Temperature control in heat treating is of paramount importance in maintaining the quality and achieving the desired metallurgical results. This article provides a detailed account of the factors affecting temperature control in heat treating furnaces, with information on temperature...
Abstract
Temperature control in heat treating is of paramount importance in maintaining the quality and achieving the desired metallurgical results. This article provides a detailed account of the factors affecting temperature control in heat treating furnaces, with information on temperature control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation thermometers fall under the noncontact type. The article describes two types of instrumentation used in heat treating: field test instruments for temperature-uniformity surveys and system-accuracy tests; and controlling, monitoring, and recording instruments for digital instrumentation.
Image
in Worker Health and Environmental Hazards Associated with Coating Application and Removal
> Protective Organic Coatings
Published: 30 September 2015
Fig. 10 Visible-emission assessments performed in accordance with the Environmental Protection Agency's Method 22 are one way to assess the adequacy of the containment system in controlling emissions.
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... and heating technologies is of increasing interest ( Ref 1 , 2 , 3 ). Against this background, the CO 2 emissions of processes and installations have to be taken into consideration today in addition to the pure energetic evaluation ( Ref 4 ). The CO 2 emission balance of the entire energetic process chain...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006954
EISBN: 978-1-62708-439-0
... that system. Likewise, AM thermographers should have an idea of the relative spatial, temporal, radiant emission, and temperature characteristics of their measured object or phenomena of interest (i.e., the measurand) before they endeavor to measure temperature. The relative geometric scales of metal AM melt...
Abstract
This article provides readers with a brief review of the applications of thermography in additive manufacturing (AM), which still is largely a research and development (R&D) effort. There is a particular focus on metals-based laser powder-bed fusion (L-PBF), although applications in directed-energy deposition (DED) and electron beam PBF (E-PBF) also are mentioned. The metrological basis of thermography is discussed in the article. Background information on radiation thermometry is provided, including how the various equations are applied. Finally, specific examples and lessons learned from various AM thermographic studies at the National Institute of Standards and Technology (NIST) are provided.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001728
EISBN: 978-1-62708-178-8
... derived selection rules occur spontaneously. Diverse factors control the relative intensities of the lines. Those transitions between a low excited state and the ground state, termed resonance transitions, generally yield the most intense emission. Fig. 1 Energy level diagram for lithium...
Abstract
This article discusses the general principles, optical systems, and emission sources of optical emission spectroscopy for elemental analysis. Changes in the energy of the valence or outer shell electrons result in the atomic lines used in emission spectroscopy. Each possible combination of electron configurations produces a spectroscopic term that describes the state of the atom. Atomic emission is analytically useful only to the extent that the emission from one atomic species can be measured and its intensity recorded independent of emission from other sources. Emission sources are often designed to minimize molecular emission. Each of the four types of emission sources; arcs, high-voltage sparks, glow discharges, and flames; has a set of physical characteristics with accompanying analytical assets and liabilities. The article also discusses the applications of each type of emission source.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001478
EISBN: 978-1-62708-173-3
... inspection techniques involved in the brazement inspection. Selected case studies are also provided for further reference. acceptance limits brazements design limits destructive inspection inspection nondestructive inspection quality control THE INSPECTION OF A BRAZED ASSEMBLY is usually...
Abstract
This article outlines the requirements and methods associated with the inspection of brazements. It emphasizes the incorporation of these requirements into the overall quality system. The article reviews the acceptance limits, design limitations, and nondestructive and destructive inspection techniques involved in the brazement inspection. Selected case studies are also provided for further reference.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
... Abstract This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal...
Abstract
This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal-transfer control.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
... possible combinations of states produce emission lines. Only transitions obeying quantum mechanically derived selection rules occur spontaneously. Diverse factors control the relative intensities of the lines. Those transitions between a low excited state and the ground state, termed resonance transitions...
Abstract
This article is a detailed account of optical emission spectroscopy (OES) for elemental analysis. It begins with a discussion on the historical background of OES and development trends in OES methods. This is followed by a description of the general principles and optical systems of OES, along with various types of emission sources commonly used for OES. Some of the processes involved in calibration and quantification of OES for direct solids analysis by the ratio method are then described. The article ends with a discussion on the applications of each type of emission sources.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009152
EISBN: 978-1-62708-186-3
... for automated quality-control purposes. The theory of eddy-current-based material properties evaluation is also discussed. displacement sensors force-monitoring device linear variable differential transformers load cells lubrication photoelectric sensors piezoelectric force sensors proximity...
Abstract
This article discusses the installation of the most commonly used force-monitoring devices, namely, load cells and piezoelectric force sensors. It describes the purpose and operation of commonly used displacement sensors, such as linear variable differential transformers, proximity sensors, photoelectric sensors, and ultrasonic sensors. The article provides information on the sensors used for detecting tool breakages and flaws in parts, the measurement of material flow during sheet metal forming, and lubrication. It also describes the operating stages of machine vision systems used for automated quality-control purposes. The theory of eddy-current-based material properties evaluation is also discussed.
1