Skip Nav Destination
Close Modal
Search Results for
elevated-temperature applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1611
Search Results for elevated-temperature applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003364
EISBN: 978-1-62708-195-5
... the mechanical properties of BMI composites. BMIs suitable for resin transfer molding processing are provided. The article concludes with information on the elevated-temperature applications of 5250-4 BMI system. bismaleimide resin composites mechanical properties resin transfer molding elevated...
Abstract
This article discusses bismaleimide (BMI) chemistry and the use of BMI in composites. An analysis of the applications illustrates how the advantages of BMIs have been exploited and perhaps suggests how these advantages might be extended to other applications. The article describes the mechanical properties of BMI composites. BMIs suitable for resin transfer molding processing are provided. The article concludes with information on the elevated-temperature applications of 5250-4 BMI system.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006611
EISBN: 978-1-62708-210-5
... Abstract Alloy 2219 is typically used in elevated temperature applications and for welded structures where post-weld heat treatment can be used. This datasheet provides information on key alloy metallurgy, processing effects on physical and tensile properties, fabrication characteristics...
Abstract
Alloy 2219 is typically used in elevated temperature applications and for welded structures where post-weld heat treatment can be used. This datasheet provides information on key alloy metallurgy, processing effects on physical and tensile properties, fabrication characteristics, and applications of this 2xxx series alloy.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006957
EISBN: 978-1-62708-439-0
... of unique designs for reciprocating components in elevated-temperature applications that are also exposed to demanding tribological conditions. The article also discusses the future of AM for automotive applications. elevated-temperature applications metal laser powder-bed fusion structural...
Abstract
High-volume additive manufacturing (AM) for structural automotive applications, along the lines of economically viable technologies such as powder metallurgy, castings, and stampings, remains a lofty goal that must be realized to obtain the well-known advantages of AM. This article presents two key opportunities for AM related to automotive applications, specifically within the realm of metal laser powder-bed fusion: alloys and product designs capable of high throughput. The article also presents the general methodology of alloy development for automotive AM. It provides examples of unique designs for reciprocating components in elevated-temperature applications that are also exposed to demanding tribological conditions. The article also discusses the future of AM for automotive applications.
Image
Published: 30 September 2015
Fig. 20 Demagnetization curves of neodymium-boron magnet containing dysprosium at elevated temperatures. These magnets are suitable for use in elevated-temperature applications. Courtesy of Shin-Etsu Chemical Co.
More
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005970
EISBN: 978-1-62708-168-9
.... ASTM Specification A436 defines eight grades of austenitic gray iron alloys, four of which are designed to be used in elevated-temperature applications (2, 2b, 3, and 5 in Table 1 ) and four types are used in applications requiring corrosion resistance (1, lb, 4, and 6 in Table 1 ). The nickel...
Abstract
High-alloy graphitic cast irons are used primarily in applications requiring corrosion resistance or strength and oxidation resistance in high-temperature service. This article describes the properties, applications and heat treatment processes of high-alloy graphitic cast irons, including austenitic gray irons and austenitic ductile irons. It also provides a discussion on the heat treatment of high-silicon irons for heat resisting and corrosion resisting applications.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006607
EISBN: 978-1-62708-210-5
... and mechanical properties in Tables 3 - 7 . The alloy also exhibits good strength retention and creep resistance at elevated temperature up to 180 °C (350 °F). It is suitable for use in moderately elevated temperature applications 120–180 °C (250–350 °F). Alloy 2124 and 2024 composition limits Table 1...
Abstract
Alloy 2124, aerospace plate alloy, is a high-purity version of 2024. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of this series alloy.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... Alloy C-276 nickel-base alloy 650 1200 1040 1900 This article covers some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. In these applications...
Abstract
This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated temperatures generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined with 0.5 to 9.0% Cr and perhaps other carbide formers. The factors affecting mechanical properties of steels include the nature of strengthening mechanisms, the microstructure, the heat treatment, and the alloy composition. The article describes these factors, with particular emphasis on chromium-molybdenum steels used for elevated-temperature service. Although the mechanical properties establish the allowable design-stress levels, corrosion effects at elevated temperatures often set the maximum allowable service temperature of an alloy. The article also discusses the effects of alloying elements in annealed, normalized and tempered, and quenched and tempered steels.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005328
EISBN: 978-1-62708-187-0
... for High-Temperature Service Graphitic irons alloyed with 4 to 6% Si provide good service and low cost in many elevated-temperature applications. These irons, whether gray or ductile, provide good oxidation resistance and stable ferritic matrix structures that will not go through a phase change...
Abstract
This article discusses the melting and pouring practices, heat treatment, and applications of different types of high-alloy graphitic iron, namely, high-silicon gray irons, high-silicon ductile irons, nickel-alloyed austenitic irons, austenitic gray irons, austenitic ductile irons, and aluminum-alloyed irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003129
EISBN: 978-1-62708-199-3
.... This behavior precludes the use of these alloys for elevated-temperature applications. The RS-P/M alloys, based on hypereutectic Al-Fe- X compositions ( Table 6 ), derive their high strengths from dispersion strengthening; the dispersoids resist dissolution and coarsening when the alloys are exposed...
Abstract
This article provides an overview of the composition and properties of powder metallurgy (P/M) aluminum powders for pressed and sintered parts. It includes the steps involved in the processing of high-performance P/M alloys. The article describes the classes of high-performance P/M alloys, including corrosion-resistant alloys (stress-corrosion cracking), elevated-temperature alloys, and low density/high-stiffness alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... temperatures for structural applications generally range from 425 to 595 °C (800 to 1100 °F). Titanium aluminide alloys show promise for applications at temperatures up to 760 °C (1400 °F). Titanium has the ability to passivate and thereby exhibit a high degree of immunity to attack by most mineral acids...
Abstract
Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure vessels, optic-system support structures, prosthetic devices, and applications requiring corrosion resistance and high strength. It explains the effects of alloying elements in titanium alloys as they play an important role in controlling the microstructure and properties and describes the secondary phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys, and advanced titanium alloys (titanium-matrix composites and titanium aluminides).
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... are used where the highest tensile and yield strengths and good elongation are required. Their impact strengths are also very good, and they can withstand elevated temperatures. Applications for Alloys 201.0 and A201.0 include structural casting members, truck and trailer castings, cylinder heads, pistons...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
... for elevated-temperature applications for gas turbine engines, but these applications have essentially been phased out. Precautions in Use Hydrogen embrittlement of Ti-5Al-2.5Sn (and its ELI modification) can occur in hydrogenating solutions at room temperature, in air or reducing atmospheres...
Abstract
This article is a comprehensive collection of properties, compositions, and applications of standard grades of titanium and selected titanium alloys. It provides data regarding the common names, Unified Number System numbers, composition limits, typical uses with service temperatures, precautions in use, and general corrosion behavior of each. The applications of titanium alloys include aerospace, gas turbine engines and prostheses. Further, the article graphically presents a comparative study of fatigue, creep and tensile properties of various titanium alloys.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003286
EISBN: 978-1-62708-176-4
... relaxation THE FIELD of materials behavior at elevated temperatures has seen a formidable wealth of advancements over the last century. These accomplishments were made possible by the work of many scientists and engineers throughout the world who developed critical technologies necessary to make high...
Abstract
This article provides the theoretical background for understanding many of the physical processes relevant to mechanical testing methods, experimental results, and analytical approaches described in this volume.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006341
EISBN: 978-1-62708-179-5
... in seawater pumps (i.e., in Ni-Resist graphitic grades) and for wear resistance (i.e., in Ni-Hard and other white iron grades) in ore crushing, grinding and handling of abrasive materials, and in other wear applications such as slurry pumps. Some applications involve elevated-temperature service where...
Abstract
The high-alloy irons can be categorized into two main groups: the high-alloy graphitic irons (covering both gray and ductile grades) and the high-alloy white irons. High-alloy irons are used in applications with demanding requirements, such as high resistance to wear, heat, and corrosion, or for combined properties. This article discusses the specification and selection of high-alloy irons. The common alloying elements and their effect on the stable and metastable eutectic temperatures are listed in a table. The article provides information on the compositions, properties and applications of high-alloy graphitic irons and high-alloy white irons.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003358
EISBN: 978-1-62708-195-5
... for use in elevated-temperature applications, where high strength, stiffness, and creep resistance are required. This reinforcement is used primarily in titanium- and nickel-base alloy MMC materials systems that require stability at very high temperatures (up to 1100 °C, or 2000 °F). In these applications...
Abstract
This article focuses on the production of particulate reinforcements that are used in discontinuously reinforced metal-matrix composite (DRMMC) materials systems, their physical and materials properties, and the particle shape and overall morphology. The most common DRMMC materials systems used for aerospace structural applications are silicon carbide and boron carbide particulate reinforcement in an aluminum alloy matrix. The article concludes with information on reinforcement chemistry for designing DRMMC materials systems.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... applications. In recent years, advances in two broad powder metallurgy (P/M) technologies—rapid solidification (RS) and mechanical alloying (mechanical attrition)—have enabled the development of a new family of high-strength aluminum alloys for elevated-temperature applications ( Ref 1 ). These new high...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
..., computer housings, and mobile-phone cases. Magnesium alloys are valuable for aerospace applications because they are lightweight and exhibit good strength and stiffness at both room and elevated temperatures. Aerospace components produced from magnesium alloys include main transmission housings...
Abstract
Magnesium and magnesium alloys have been employed in a wide variety of structural applications because of their favorable combination of tensile strength, elastic modulus, and low density. Providing a brief section on occurrence, production, and uses of magnesium, this article describes alloy and temper designations of cast and wrought magnesium alloys. The role of mechanical properties and fabrication characteristics in selection of product forms for structural applications is covered. The article explores the use of magnesium alloys as a substitution for heavier metals such as steel and aluminum alloys to reduce weight in structural parts.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001048
EISBN: 978-1-62708-161-0
... Abstract Stainless steels are widely used at elevated temperatures when carbon and low-alloy steels do not provide adequate corrosion resistance and/or sufficient strength at these temperatures. This article deals with the wrought stainless steels used for high temperature applications...
Abstract
Stainless steels are widely used at elevated temperatures when carbon and low-alloy steels do not provide adequate corrosion resistance and/or sufficient strength at these temperatures. This article deals with the wrought stainless steels used for high temperature applications. It gives some typical compositions of wrought heat-resistant stainless steels, which are grouped into ferritic, martensitic, austenitic, and precipitation-hardening (PH) grades. Quenched and tempered martensitic stainless steels are essentially martensitic and harden when air cooled from the austenitizing temperature. These alloys offer good combinations of mechanical properties. The article focuses on mechanical property considerations and corrosion resistance considerations of stainless steels. The corrosion and oxidation resistance of wrought stainless steels is similar to that of cast stainless steels with comparable compositions.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001064
EISBN: 978-1-62708-162-7
... for applications where good formability is necessary. It is lower in alloying content ( Table 4 ) than the other PFC alloys for elevated-temperature service and is aimed for applications such as rivets and thin-walled tubing. Scientists at Alcan International Limited took a different approach to designing RS-P...
Abstract
This article discusses the applications of high-strength aluminum powder metallurgy (P/M) alloys, detailing the advantages, properties, and the various steps involved in P/M technology, including powder production, powder processing, and degassing and consolidation. Three areas of design efforts to push the inherent advantages of aluminum alloys to new limits are also covered: high ambient-temperature strength with improved corrosion and stress corrosion cracking resistance; improved elevated-temperature properties so aluminum alloys can more effectively compete with titanium alloys; and increased stiffness and/or reduced density for aluminum alloys to compete with organic composites. An appendix provides a detailed account of the properties, processing, and applications of conventionally pressed and sintered aluminum P/M alloys.
1