Skip Nav Destination
Close Modal
By
Kanchan M. Kelkar, Suhas V. Patankar, Alec Mitchell, Ramesh S. Minisandram, Ashish D. Patel
Search Results for
electroslag remelting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 104 Search Results for
electroslag remelting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005510
EISBN: 978-1-62708-197-9
... Abstract This article provides an overview of the studies on computational modeling of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes. These models involve the axisymmetric analysis of the electromagnetic, flow, heat-transfer, and phase-change phenomena to predict...
Abstract
This article provides an overview of the studies on computational modeling of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes. These models involve the axisymmetric analysis of the electromagnetic, flow, heat-transfer, and phase-change phenomena to predict the pool shape and thermal history of an ingot using two-dimensional axisymmetric models for VAR and ESR. Analysis of segregation of alloying elements during solidification that gives rise to macrolevel compositional nonuniformity in titanium alloy ingots is also described. The article discusses the important features of the control-volume-based computational method to review the unique aspects of the processes. Measurement of the properties of alloys and slags is explained and an analysis of the process variants for improving the predictive accuracy of the models is presented.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005201
EISBN: 978-1-62708-187-0
... Abstract Electroslag remelting (ESR) is commonly used to produce the highest levels of quality in plate steels, particularly in thick plates. This article provides an overview of the ESR and discusses the major components and operations of the ESR furnaces. It describes the principles of ingot...
Abstract
Electroslag remelting (ESR) is commonly used to produce the highest levels of quality in plate steels, particularly in thick plates. This article provides an overview of the ESR and discusses the major components and operations of the ESR furnaces. It describes the principles of ingot solidification and the various defects of remelted ingot such as tree ring patterns, freckles, and white spots. The article explains several variations of ESR such as pressure electroslag remelting, remelting under reduced pressure, and electroslag rapid remelting. It also examines the features of steel ESR and superalloy ESR.
Image
Published: 01 December 1998
Image
Published: 01 January 1990
Fig. 16 Tension-compression fatigue curves for air-melted and electroslag-remelted heats of H13 steel. Axial fatigue tests performed in an Ivy machine at a frequency of 60 Hz; the stresses were fully reversed for all tests ( R = −1). Open symbols indicate longitudinal fatigue data; filled
More
Image
in Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 1 Schematic diagram of the conventional (a) vacuum arc remelting and (b) electroslag remelting processes. Courtesy of ATI Allvac
More
Image
Published: 01 January 1996
Fig. 1 Comparison of the Charpy V-notch energy and fracture appearance of 2 1 4 Cr-1Mo steel produced by air, vacuum-arc remelting (VAR), and electroslag remelting (ESR) practices. Source: Ref 12
More
Image
Published: 01 December 2008
Fig. 6 Potential processing routes for products cast from vacuum induction melting (VIM) ingots or electrodes. VAR, vacuum are remelting; ESR, electroslag remelting; EB, electron beam; HIP, hot isostatic pressing. Source: Ref 1
More
Image
in Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 13 Electromganetic, flow, temperature, and liquid fraction fields in the slag and ingot during an electroslag remelting process for IN 718
More
Image
in Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 3 Computational domain for analysis of the steady-state behavior of the electroslag remelting process (frame of reference attached to the top surface of the slag)
More
Image
in Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 14 Axial variations of local heat flux and effective heat-loss coefficient over the circumferential surfaces of the slag and ingot during an electroslag remelting process for IN 718
More
Image
Published: 30 September 2015
Fig. 26 S - N curve from longitudinal rotating bending tests on conventional AISI M2 hourglass specimens at R = –1. Left, air melted; right, electroslag remelted
More
Image
in Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 15 Predicted radial variations of the local solidification time and dendrite arm spacings (DAS) in the solidified IN 718 ingot formed in an electroslag remelting process under steady-state conditions
More
Image
in Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 16 Predicted radial variations of the interdendritic Rayleigh number for two different freckle-initiation solid fractions in the solidified IN 718 ingot formed in an electroslag remelting process under steady-state conditions
More
Image
Published: 01 January 2006
Fig. 6 Fatigue limit at 2 million cycles versus defect size and process route for tool steels. Fatigue limit for various tool steels at 60–62 HRC. R =0. P/M, powder metallurgy; ESR, electroslag remelt; SF, spray forming. Source: Ref 2
More
Image
Published: 01 January 1990
Fig. 15 Tension-tension fatigue curves for longitudinal specimens of air-melted and electroslag-remelted heats of H13 steel. Axial fatigue tests performed in an Ivy machine at a frequency of 60 Hz; the alternating stress was 67% of the mean stress for all tests ( R = 0.2). Arrows signify
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... ID inner diameter CAE computer-aided engineering EPS expanded polystyrene pattern in. inch CAM computer-aided manufacturing ESR electroslag remelting ISO International Organization for CE carbon equivalent ESW electroslag welding CET columnar-equiaxed transition et al. and others Standardization CG...
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
... vacuum arc remelting vacuum induction melted THERE ARE TWO COMMONLY USED remelting processes for metal refinement: electroslag remelting (ESR) and vacuum arc remelting (VAR). In both processes, an electrode is melted as it advances into the melting region of the furnace. As the working face...
Abstract
The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots. It is also used in the triplex production of superalloys. This article illustrates the VAR process and the capabilities and variables of the process. It also presents a discussion on the melt solidification, resulting structure, and ingot defects. The article concludes with a discussion on the VAR process of superalloy and titanium and titanium alloy.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
.... Dissimilar Metal Joining Electroslag remelting has been used to develop transition pieces for heavy-wall steam piping where low-alloy chromium-molybdenum steel pipe is to be joined to austenitic stainless steel pipe. Two round ingots, one of the ferritic alloy and one of the austenitic stainless steel...
Abstract
Electroslag welding (ESW) and electrogas welding (EGW) are two related procedures that are used to weld thick-section materials in the vertical or near-vertical position between retaining shoes. This article discusses the fundamentals of the electroslag process in terms of heat flow conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
... Abstract Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding...
Abstract
Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding, wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process applications of ESW and EGW are also discussed.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
... Abstract This article discusses the principle, coil design, types and operation of a vacuum induction furnace. It describes the operation parameters that should be considered during the functioning of the induction furnace. electroslag remelting induction coils vacuum arc remelting...
1