1-20 of 127 Search Results for

electroplated nickel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003833
EISBN: 978-1-62708-183-2
... inner layer is typically nickel and must be hard enough to prevent an anvil effect in wear applications. Anvil effect describes a mechanical force applied to a thin hard coating that is on a softer coating or substrate, which results in cracking of the hard coating and penetration and deformation of the...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001245
EISBN: 978-1-62708-170-2
... worldwide consumption of nickel for electroplating is approximately 180 million pounds (81,700 metric tons) and accounts for 11 to 12% of world nickel consumption. Some basic information about nickel and common nickel salts for plating is given in the following table: Nickel Atomic weight 58.69...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001263
EISBN: 978-1-62708-170-2
... Abstract Electroforming is the process by which articles or shapes can be exactly reproduced by electrodeposition on a mandrel or form that is later removed, leaving a precise duplicate of the original. This article discusses electroforming applications, and explains electroforming of nickel...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
... Abstract Nickel alloys electroplated for engineering applications include nickel-iron, nickel-cobalt, nickel-manganese, and zinc-nickel. This article provides the process description and discusses the processing variables, properties, advantages, and disadvantages of nickel-iron, nickel-cobalt...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... ground material to obtain a surface suitable for inspection. Electropolishing of high-nickel alloys smooths the surface by removing metal through a controlled electrochemical process that is similar to, but essentially the reverse of, electroplating. When the alloy is immersed into an electrolyte and...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001255
EISBN: 978-1-62708-170-2
... applications substrate material wastewater treatment COPPER ALLOYS are widely used as electroplated coatings, and they can be used with practically any substrate material that is suitable for electroplating. While alloys such as copper-gold and copper-gold-nickel are commonly electroplated, these are...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... Abstract This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001307
EISBN: 978-1-62708-170-2
... with a greaseless compound and a cloth wheel. Buffing is seldom required for the finishing of heat-resistant alloys. Chromium, copper, nickel, and silver are sometimes electroplated on heat-resistant alloys in order to: Prepare for brazing Deposit brazing metal Provide antigalling...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001264
EISBN: 978-1-62708-170-2
... limitations of electroless nickel coatings include: Advantages Good resistance to corrosion and wear Excellent uniformity Solderability and brazeability Low labor costs Limitations Higher chemical cost than electroplating Brittleness Poor welding characteristics due to...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... deposits can vary from about 150 to 500 HV depending on the plating conditions (current density, solution pH and temperature, and composition). The widest use of electroplated nickel for wear applications is as an undercoat for chromium ( Ref 9 ). If thick deposits are needed, for example, in building up...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
... steel chromate conversion coatings chromium plating cleaning conversion coatings electrochemical finishing electrogalvanizing electroless nickel plating electroplating finishing hardfacing heat treatment high-strength low-alloy steel hot dip coatings ion implantation laser surface...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... discussed in the electroplating section. Chromium is the most promising of the metallic coatings for molybdenum. It offers excellent oxidation protection and is compatible with substrate; however, chromium is embrittled by nitrogen and will crack and spall on repeated thermal cycling. A nickel or nickel...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... use. Gold is usually applied over an electroplated undercoating of nickel or silver, but may be electroplated directly on the copper alloy. In the electronics industry, nickel is plated to copper before gold plating. The nickel barrier stops migration of copper into the gold layer. The gold...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001253
EISBN: 978-1-62708-170-2
... price level and the daily variability of its price have required chemists and engineers to severely limit the concentration of gold in the plating solution. Nickel, alkaline copper, and silver are typically plated from solutions that contain 37 g of metal per liter of plating bath. Acid copper is plated...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003022
EISBN: 978-1-62708-200-6
... coatings systems that are capable of adequate performance in each service condition. Table 3 Service condition classifications for decorative electroplated copper plus nickel plus chromium coatings on plastics Service condition classification Description Substrate/coating classification number...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001246
EISBN: 978-1-62708-170-2
... aluminum automobile engine parts, and the electroforming of iron foils for certain magnetic applications. In the past there was a large market for electroformed stampers, engraving plates, and textile rollers, but these iron applications have been almost totally replaced by nickel plating. However, as...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001312
EISBN: 978-1-62708-170-2
.... Property and performance testing are currently in progress. Hafnium, zirconium, and Zircaloys (zirconium-tin alloys), are difficult to coat with an adherent electroplate because they form a tenacious oxide film in air and aqueous solutions. There are alternative processes for plating nickel on zirconium...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001254
EISBN: 978-1-62708-170-2
.... Therefore, an electroplated base coating must be used. Silver and silver-tin alloys (with varying concentrations of tin) have exhibited excellent field service behavior and are now applied for decorative as well as engineering purposes. Nickel is not recommended for use as a base coating. For decorative use...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
..., casting, and molding operations. On the other hand, high-temperature die materials are required for special applications such as isothermal forging of titanium- and nickel-base alloys. These die materials include various superalloys and TZM molybdenum. Recommendations on the selection of these materials...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001271
EISBN: 978-1-62708-170-2
... in continuous steel strip plating lines is electrodeposited with one of five metallic coatings: zinc, tin, chromium, and alloys of zinc with either nickel or iron. Several other metallic coatings, such as copper, nickel, brass (Cu-Zn), and terne (Pb-Sn), are also applied by continuous steel strip...