Skip Nav Destination
Close Modal
Search Results for
electronic applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1848
Search Results for electronic applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005736
EISBN: 978-1-62708-171-9
..., conductors, and resistors, and discusses their implications and associated limitations for device applications and potential remedial measures. The article presents specific examples of electrical/electronic device applications, including electromagnetic interference/radio-frequency interference shielding...
Abstract
Thermal spray processes involve complete or partial melting of a feedstock material in a high-temperature flame, and propelling and depositing the material as a coating on a substrate. This article describes the properties of sprayed electronic materials, including dielectrics, conductors, and resistors, and discusses their implications and associated limitations for device applications and potential remedial measures. The article presents specific examples of electrical/electronic device applications, including electromagnetic interference/radio-frequency interference shielding, planar microwave devices, waveguide devices, sensing devices, solid oxide fuel cells, heating elements, electrodes for capacitors and other electrochemical devices.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... Abstract Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
... discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing. capacitors electronic applications packaged integrated circuits resistors solder joint...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Image
Published: 01 January 2006
Fig. 1 Electrical and electronic applications for formed copper alloy parts. (a) Connectors used in home appliances and automotive electrical systems. (b) Copper alloy leadframe for a semiconductor device
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002475
EISBN: 978-1-62708-194-8
... Abstract This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic...
Abstract
This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic and special technologies such as electrooptical.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... in improved and new materials providing even greater benefits. The number of production applications is increasing rapidly, and composites are well on their way to becoming the twenty-first century materials of choice for thermal management and electronic packaging. This article provides an overview...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating. computer-aided design dynamic beam deflection electron beam electron beam direct manufacturing system high-frequency multibeam process multiple-pool...
Abstract
This article focuses on the use of electron beam (EB) for near-net shape processing based on the wire feed material-delivery method. EB deposition processes start with a 3-D model designed in a computer-aided design (CAD) environment, where the deposition path and process parameters are generated. The article provides a description of the electron beam direct manufacturing (EBDM) system used for manufacturing of target parts with the aid of a case study. The control of the essential variables of dynamic beam deflection is also reviewed. The article also includes information on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating.
Image
in Additive Manufacturing in Electronics and Functional Devices
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 1 (Left) Various application areas of printed electronics, including aerospace, transportation, energy, construction, defense, and biomedical industries. (Right) Schematic of a printed flexible hybrid electronics system showing the key components, including the sensors, antenna, battery
More
Image
in High-Throughput Electrospinning of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001459
EISBN: 978-1-62708-173-3
... Abstract Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters...
Abstract
Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters, including types of solder alloy in terms of selection process; selection of substrate base material; flux selection based on adequate wettability by the solder; solder joint assembly; combined substrate, solder, and flux properties; and manufacturing procedures. Each of these parameters is explored using examples of both structural and electronic applications. The article concludes with a discussion on the environmental, safety, and health issues to be considered during soldering.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001252
EISBN: 978-1-62708-170-2
... Abstract Electroplated silver is used in both decorative and functional applications, such as engineering and electrical/electronic applications. This article explains the solution formulations and specifications of electrolytes used in silver plating. decorative applications...
Abstract
Electroplated silver is used in both decorative and functional applications, such as engineering and electrical/electronic applications. This article explains the solution formulations and specifications of electrolytes used in silver plating.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001399
EISBN: 978-1-62708-173-3
... with a discussion on reliability concerns and processing concerns when using hot gas soldering in electronics assembly. gas flow rates hot gas soldering reliability soldering HOT GAS SOLDERING is a process that is commonly used in applications where the workpiece thermal mass is small and the melting...
Abstract
Hot gas soldering is a process that is commonly used in applications where the workpiece thermal mass is small and the melting temperature of the solder is relatively low. This article describes the characteristics of hot gas heating that are critical to its effectiveness in soldering. These characteristics include the focus of gas flow, gas flow rates (velocity and volume), gas temperature, and typical gas media. The article explains the thermal profile of a component being soldered and the temperature across adjacent components, which helps to understand time-temperature relationship. It concludes with a discussion on reliability concerns and processing concerns when using hot gas soldering in electronics assembly.
Image
Published: 30 November 2018
Fig. 20 Three low-solid-fraction rheocast components produced for electronics applications. Courtesy of Fujian KinRui Hi-Tech Co., Ltd
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
.... This process is self-limiting and will stop when the oxidation reaction of the base metal stops. Generally these coatings are very thin and contain elements of the base material. These coatings are used primarily in electronic applications. Immersion alloy deposition processes are easy to control...
Abstract
Metallic nonelectrolytic alloy coatings produced from aqueous solutions are commercially used in several industries, including electronics, aerospace, medical, oil and gas production, chemical processing, and automotive. Nonelectrolytic coating systems use two types of reactions to deposit metal onto a part: electroless and displacement. This article explains the various types of electroless and dispersion alloy coating systems. It provides information on the processing of parts, process control, deposit analysis, and equipment used for coating nonelectrolytic displacement alloys. The article concludes with a discussion on the safety and environmental concerns associated with nonelectrolytic deposition processes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003049
EISBN: 978-1-62708-200-6
.... For instance, silicate glasses have been modified to improve their optical properties. Nonsilicate glasses, such as chalcogenides, are also being developed. In addition, glass-ceramic compositions are being developed for structural and electronic applications. Ceramic materials are used for important...
Abstract
This article provides an overview of the types, properties, and applications of traditional and advanced ceramics and glasses. Principal product areas for traditional ceramics include whitewares, glazes, porcelain enamels, structural clay products, cements, and refractories. Advanced ceramics include electronic ceramics, optical ceramics, magnetic ceramics, and structural ceramics.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005732
EISBN: 978-1-62708-171-9
.... The decision to use coatings and the selection of the optimum coating for an application is based on many factors. Some key factors include: Type of surface modification process, such as thermal spray, laser cladding plasma-transferred arc (PTA), plating, electron beam physical vapor deposition (EB-PVD...
Abstract
This article describes the process of selecting an optimum coating and material system for a specific application. It reviews critical coating functions that influence the coating selection process, and presents some application success stories. The article explores the benefits of thermal spray coatings and functions they provide. It also presents key references from various National Thermal Spray Conference, United Thermal Spray Conference, and International Thermal Spray Conference Proceedings from 2006 through 2012.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006547
EISBN: 978-1-62708-290-7
... Abstract Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared...
Abstract
Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects were the most commonly mentioned within the included articles and were identified as being the most relevant for a comprehensive performance assessment: printing process, line width, overspray, complex surface compatibility, diversity of printable materials, and deposition rate. This article is an account of the results of this comparison study in terms of printing capabilities, ink requirements, and economic aspects.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006700
EISBN: 978-1-62708-210-5
... regulations in Europe. A dent-resistant temper also has been developed for computer and electronic applications ( Ref 2 ). Alloy 5182 typical physical properties Table 2 Alloy 5182 typical physical properties Property Value Poisson’s ratio at 20 °C (68 °F) 0.33 Elastic modulus at 20 °C...
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and tensile properties, and applications of sheet alloy 5182.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... to engineering and production than to aesthetics, although most of the work was still done manually. By the 20th century, metallurgical science had developed to the point that new solders could be tailored specifically for electrical, plumbing, or structural applications. The emerging electronics industry...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001398
EISBN: 978-1-62708-173-3
... contamination by a host of other factors, including solderability degradation from oxidation and handling. However, blind laser soldering is less suitable in electronics applications, where components and the printed circuit pose a serious problem, because no two joints are identical. Although they might...
Abstract
Laser soldering uses a well-focused, highly controlled beam to deliver energy to a desired location for a precisely measured length of time. This article focuses on two types of laser soldering operations, namely, blind laser soldering and intelligent laser soldering. It discusses the function of the blind laser soldering and provides a brief description on key attributes of the blind laser soldering, including repeatability, speed, quality, safety, and flexibility. The article explores the function of the intelligent laser soldering and concludes with a section on key attributes of the intelligent laser soldering. The key attributes of the intelligent laser soldering include repeatability, speed, quality, safety, cost, and flexibility.
1