Skip Nav Destination
Close Modal
Search Results for
electron probe X-ray microanalysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 77 Search Results for
electron probe X-ray microanalysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006638
EISBN: 978-1-62708-213-6
... of the principles of electron-excited X-ray microanalysis. It begins by discussing the physical basis of electron-excited X-ray microanalysis and the advantages and limitations of energy dispersive spectrometry (EDS) and wavelength dispersive spectrometry for electron probe microanalysis. Key concepts...
Abstract
This article is a detailed account of the principles of electron-excited X-ray microanalysis. It begins by discussing the physical basis of electron-excited X-ray microanalysis and the advantages and limitations of energy dispersive spectrometry (EDS) and wavelength dispersive spectrometry for electron probe microanalysis. Key concepts for performing qualitative analysis and quantitative analysis by electron-excited X-ray spectrometry are then presented. Several sources that lead to measurement uncertainties in the k-ratio/matrix corrections protocol are provided, along with the significance of the raw analytical total. Sections on accuracy of the standards-based k-ratio/matrix corrections protocol with EDS and processes of analysis when severe peak overlap occurs are also included. The article provides information on low-atomic-number elements, iterative qualitative-quantitative analysis for complex compositions, and significance of standardless analysis in the EDS software. It ends with a section on the processes involved in elemental mapping for major and minor constituents.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001768
EISBN: 978-1-62708-178-8
... of the components of a wavelength-dispersive x-ray spectrometer. Courtesy of Cameca Instruments Abstract Abstract Electron probe microanalysis (EPMA) makes it possible to combine structural and compositional analysis in one operation. This article describes the basic concepts of microanalysis...
Abstract
Electron probe microanalysis (EPMA) makes it possible to combine structural and compositional analysis in one operation. This article describes the basic concepts of microanalysis and the processing of EPMA that involves the measurement of the characteristic X-rays emitted from a microscopic part of a solid specimen bombarded by a beam of accelerated electrons. It provides information on the various aspects of energy-dispersive spectrometry (EDS) and wavelength-dispersive spectrometry (WDS), and elucidates the qualitative analysis of the major constituents of EDS and WDS. The article includes information on the analog and digital compositional mapping of elemental distribution, and describes the strengths and weaknesses of WDS and EDS spectrometers in X-ray mapping. It also outlines the application of EPMA for solving various problems in materials science.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
.... The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... … N … • N … … • • • • … … • Auger electron spectroscopy • … … … • • … … • • • • … … … Electron probe x-ray microanalysis N … … … N N N … N … N N N … … Electron spin resonance N N … … N N N N … … … N N N … Elemental and functional...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003253
EISBN: 978-1-62708-199-3
...Abstract Abstract This article describes the operation and capabilities of surface analysis methods of metals, including scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy...
Abstract
This article describes the operation and capabilities of surface analysis methods of metals, including scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. It provides information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... spectroscopy (EDS), electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and x-ray powder diffraction (XRPD). Energy-Dispersive X-Ray Analysis Energy-dispersive x-ray analysis is normally conducted using a SEM fitted with an x-ray detector...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... microscopy; COMB, high-temperature combustion; EFG, elemental and functional group analysis; EPMA, electron probe x-ray microanalysis; ESR, electron spin resonance; FTIR; Fourier transform infrared spectroscopy; GC, gas chromatography; GC/MS, gas chromatography/mass spectrometry; IA, image analysis; IC, ion...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... electron microscopy, electron probe x-ray microanalysis, and Auger electron spectroscopy, by which inclusion chemistries can be determined. Again, it should be emphasized that this Handbook is meant as a tool to familiarize the nonanalytical specialist with modern analytical techniques and to help him...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... electron microscopy CBED convergent-beam electron diffraction DRS diffuse reflectance spectroscopy EDS energy-dispersive spectroscopy EELS electron energy loss spectroscopy ENAA epithermal neutron activation analysis EPMA electron probe x-ray microanalysis...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... spectrometer and was the model for the first commercial systems (see the article “Electron Probe X-Ray Microanalysis” in Materials Characterization Volume 10 of ASM Handbook. These systems consisted of an x-ray detector and single-crystal diffractometers that moved synchronously around the sample...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001725
EISBN: 978-1-62708-178-8
... Electron Microscopy,” “Electron Probe X-Ray Microanalysis,” and “Low-Energy Electron Diffraction.” Each article begins with a summary of general uses, applications, limitations, sample requirements, and capabilities of related techniques, which is designed to give the reader a quick overview...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... ● … … ● ● … … ● ● ● ● S … … S Electron probe x-ray microanalysis ● … … ● ● ● … ● … ● ● S S … ● Image analysis … … … … … … ● ● … … … … … … ● Ion chromatography D, N … … D, N D, N D, N D, N … … D, N D, N D, N … … … Inductively coupled plasma atomic emission...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... , p 71 12. Barbi N.C. , Electron Probe Microanalysis Using Energy Dispersive X-ray Spectroscopy , PGT, Inc. , 1981 13. Reed S.J.B. , Electron Microprobe Analysis , Cambridge University Press , 1975 14. Goldstein J.I. et al. , Scanning Electron Microscopy...
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... five line drawings, two of which are graphs containing superimposed electron fractographs. Information on the principles, instrumentation, and applications associated with AES and EDS is provided in the articles “Auger Electron Spectroscopy” and “Electron Probe X-Ray Microanalysis,” respectively...
Abstract
This article provides an overview of how fractographs in this Atlas are organized and presented. It contains a table that lists the distribution content of illustrations for various materials discussed in the Atlas. The causes of fractures for various ferrous and nonferrous alloys and engineered materials are also illustrated.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... Microscopy and X-Ray Microanalysis , 4th ed. , Springer , 2018 , 10.1007/978-1-4939-6676-9 • Newbury D.E. and Ritchie N.W.M. , Electron Probe X-Ray Microanalysis , Materials Characterization , Vol 10 , ASM Handbook , ASM International , 2019 , 10.31399/asm.hb.v10.a0006638...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... to realize that the x-ray sample volume and shape vary with the electron beam voltage and the sample atomic number, effects that are discussed in Ref 3 and in the article “Electron Probe X-Ray Microanalysis” in this Volume. In general, higher voltages, lower density, and lower atomic number elements...
Abstract
Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account of the instrumentation and principles of SEM, broadly explaining its capabilities in resolution and depth of field imaging. It describes three additional functions of SEM, including the use of channeling patterns to evaluate the crystallographic orientation of micron-sized regions; use of backscattered detectors to reveal grain boundaries on unetched samples and domain boundaries in ferromagnetic alloys; and the use of voltage contrast, electron beam-induced currents, and cathodoluminescence for the characterization and failure analysis of semiconductor devices. The article compares the features of SEM with that of scanning Auger microscopes, and lists the applications and limitations of SEM.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001766
EISBN: 978-1-62708-178-8
... of the electron beam increases, smaller electron probe sizes can be used, and the resolution attainable in the analysis (imaging, electron diffraction, and x-ray microanalysis) increases; that is, the region under analysis decreases. Analytical electron microscopy electron sources are discussed further in Ref 4...
Abstract
Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information from small regions of the specimen. This article illustrates the effectiveness of the technique in solving materials problems. The first section of the article provides information on analytical electron microscope (AEM) and its basic operational characteristics as well as on electron optics, electron beam/specimen interactions and the generation of a signal, signal detectors, electron diffraction, imaging, x-ray microanalysis, electron energy loss spectroscopy, and sample preparation. The second section consists of 12 examples, each illustrating a specific type of materials problem that can be solved, at least in part, with AEM.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
... spectroscopy ● ● ● ● … ● ● ● ● ● … … … … Electron probe x-ray microanalysis ● ● ● ● ● … ● ● ● ● … S … … Flowability analyzer … … … … ● ● … … … … … … … … Image analysis … … … … … ● ● ● … … … S … ● Ion chromatography D … D D D D … … D...
Abstract
This article uses metal and alloy powders as examples to briefly discuss how to perform the characterization of powders. It begins by reviewing some of the techniques involved in the sampling of powders to ensure accurate characterization. This is followed by a discussion on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical properties. The article also discusses the important characteristics and compositions of powder as well as impurities that directly affect powder properties. It ends with a description of the ignition and dust-explosion characteristics of organic and metal powders.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... Microscope , J. Phys. E. , Vol 8 (No. 12 ), Dec 1975 , p 1037 – 1041 , 10.1088/0022-3735/8/12/018 4. Goldstein J.I. et al. , The SEM and Its Modes of Operation , Scanning Electron Microscopy and X-Ray Microanalysis , Springer US , Boston, MA , 2003 , p 21 – 60 10.1007/978-1...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.