Skip Nav Destination
Close Modal
By
Richard D. Zipp, E. Philip Dahlberg
By
L. Scott Chumbley, Larry D. Hanke
By
Qiming Zhang, Xing Qiu, Yuanjie Cheng, Jeffry C.C. Lo, S.W. Ricky Lee ...
By
James R. Varner, David L. Ahearn
By
Simon A. Barter
By
Craig J. Schroeder, John M. Tartaglia
Search Results for
electron fractography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 193
Search Results for electron fractography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006876
EISBN: 978-1-62708-387-4
... of component material(s); and qualitative or semiquantitative analysis of deposits or corrosion products on or near fracture surfaces. fractography fracture mechanisms fracture surfaces scanning electron microscopy FRACTURE SURFACES have been studied qualitatively for hundreds of years. One...
Abstract
This article presumes the reader has a basic understanding of the operation and principles of scanning electron microscopy (SEM). The emphasis of this article is specifically on the application of SEM to the study of metallic and nonmetallic fracture surfaces, where the typical objectives of SEM examination of a fracture surface may include the following: identification of characteristic fracture features to aid in identifying fracture mechanism(s); characterization of material anomalies that may have influenced the fracture; qualitative or semiquantitative chemical analysis of component material(s); and qualitative or semiquantitative analysis of deposits or corrosion products on or near fracture surfaces.
Book Chapter
History of Fractography
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006872
EISBN: 978-1-62708-387-4
... Abstract This article reviews the historical development of fractography, from the early studies of fracture appearance dating back to the sixteenth century, and including the development of microfractography in the middle of the 20th century, to the current state-of-the-art work in electron...
Abstract
This article reviews the historical development of fractography, from the early studies of fracture appearance dating back to the sixteenth century, and including the development of microfractography in the middle of the 20th century, to the current state-of-the-art work in electron fractography and quantitative fractography.
Book Chapter
History of Fractography
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001830
EISBN: 978-1-62708-181-8
... dating back to the sixteenth century to the state-of-the-art work in electron fractography and quantitative fractography. It also describes the applications and limitations of scanning electron microscope and transmission electron microscope. electron fractography fractography microfractography...
Abstract
The purpose of fractography is to analyze fracture features and attempt to relate the topography of the fracture surface to the causes and/or basic mechanisms of fracture. This article reviews the historical development of fractography, from the early studies of fracture appearance dating back to the sixteenth century to the state-of-the-art work in electron fractography and quantitative fractography. It also describes the applications and limitations of scanning electron microscope and transmission electron microscope.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... Abstract Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging...
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Book Chapter
Preparation and Preservation of Fracture Specimens
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001832
EISBN: 978-1-62708-181-8
... demagnetization if scanning is to be done at magnification above about 500×. References References 1. Zipp R.D. , Preservation and Cleaning of Fractures for Fractography , Scan. Elec. Microsc. , No. 1 , 1979 , p 355 – 362 2. Phillips A. et al. , Electron Fractography Handbook...
Abstract
Fracture surfaces are fragile and subject to mechanical and environmental damage that can destroy microstructural features. This article discusses the importance of care and handling of fractures and the factors that need to be considered during the preliminary visual examination. It describes the procedures for sectioning a fracture and opening secondary cracks as well as the effect of nondestructive inspection on subsequent evaluation. The article provides information on the most common techniques for cleaning fracture surfaces. These techniques are dry air blast cleaning, replica stripping, organic-solvent cleaning, water-base detergent cleaning, cathodic cleaning, and chemical-etch cleaning.
Book Chapter
Scanning Electron Microscopy for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... should be given the opportunity to examine the specimen before it is prepared for examination in the SEM or altered in any other way. Application of Scanning Electron Microscope in Fractography Fractography is one of the most common applications of SEM. The large depth of focus, the possibility...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
... be varied to increase the relative number of cycles to failure, permitting statistical analysis. Scanning electron microscope fractography is typically only available at the university level, but the expected morphology would be dimpled rupture with substantial plastic deformation. Stress Rupture...
Abstract
Identification of the fracture mechanism is one of the principal responsibilities of a failure analyst and is an important component of any root-cause analysis. This article explores the varied mechanisms responsible for metal fracture, particularly regarding fractography. The behavior of engineering materials at fracture is based on a large number of interrelated characteristics from the atomic level to the component level. These characteristics range from ductile to brittle at the microscale and macroscale levels. Fundamental relative ductility results from the type of electronic bonding, the crystal structure, and the broader long-range degree of order. It provides detailed discussion on ductile fracture, brittle fracture, mixed fracture, embrittlement, stress-corrosion cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... discussed. display equipment electron optical column fractography microstructure sample preparation scanning electron microscopy signal detection vacuum system THE SCANNING ELECTRON MICROSCOPE (SEM) is one of the most versatile instruments for investigating the microstructure of metallic...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Book Chapter
Metallography: An Introduction
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003720
EISBN: 978-1-62708-177-1
..., and fatigue fracture with illustrations. It discusses microanalysis with a focus on the method of light microscopy and includes information of scanning electron microscope in fractography. The article also explains the characteristics of solidification, transformation, deformation structures...
Abstract
This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle, and fatigue fracture with illustrations. It discusses microanalysis with a focus on the method of light microscopy and includes information of scanning electron microscope in fractography. The article also explains the characteristics of solidification, transformation, deformation structures, and discontinuities that are present in a microstructure. It concludes with information on image analysis.
Book Chapter
Principles and Procedures of Fractography
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003226
EISBN: 978-1-62708-199-3
... fracture information contained in optical and scanning-electron microscope fractographs. fractography fracture surface preparation light microscopy optical fractographs scanning-electron microscope fractographs FRACTOGRAPHY is the term coined in 1944 to describe the science of studying...
Abstract
Fractography is the systematic study of fractures and fracture surfaces. It is a useful tool in failure analysis and provides a means for correlating the influence of microstructure on the fracture mode of a given material. This article discusses the preservation, preparation, and photography of fractured parts and surfaces, and describes some of the more common fractographic features revealed by light microscopy, including tensile-fracture surface marks in unnotched specimens, fatigue marks, and structural discontinuities within the metal. The article also explains how to interpret fracture information contained in optical and scanning-electron microscope fractographs.
Book Chapter
Introduction to Quantitative Fractography
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007033
EISBN: 978-1-62708-387-4
... Abstract The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure...
Abstract
The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure the fracture surface profile along x-y sections of a fracture surface from metallographic sections or nondestructive techniques; and the three-dimensional reconstruction of the fracture surface topology using imaging methods such as stereo SEM imaging and confocal scanning laser microscopy. These three general methods of assessing fracture surface topology are reviewed in this article.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006947
EISBN: 978-1-62708-387-4
... environmental stress cracking fatigue fracture fractography fracture surfaces optical microscopes polymers scanning electron microscopes ONE OF THE COMMONLY UTILIZED SKILLS in failure analysis is fracture-surface analysis, often referred to as fractography. Studying the characteristic features...
Abstract
This article provides an overview of polymer fractography, with examples of various fracture surfaces created under diverse loading conditions. The focus is on the interpretation of polymer fracture-surface features in light of the unique viscoelastic nature of polymers. The article presents fractographic examples of three time-dependent cracking mechanisms: fatigue fracture, creep rupture, and environmental stress cracking. It details characteristic fractographic features that can be observed in optical microscopy (OM) and scanning electron microscopy (SEM).
Book Chapter
Fractography of Solder Joints
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007030
EISBN: 978-1-62708-387-4
... Abstract Solder cracking is one of the dominant failure modes of the electronic assembly system. Experience shows that solder joints can fail due to processing defects during solder joint formation or due to excessive loading in various applications. This article introduces major fractography...
Abstract
Solder cracking is one of the dominant failure modes of the electronic assembly system. Experience shows that solder joints can fail due to processing defects during solder joint formation or due to excessive loading in various applications. This article introduces major fractography techniques to demonstrate typical solder joint failure and background failure mechanisms. These techniques may be helpful to readers in recognizing failure modes and in preventing further failures during product development and process implementation.
Book Chapter
Fracture Modes and Appearances in Ceramics
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006880
EISBN: 978-1-62708-387-4
... Abstract Fractography is the means and methods for characterizing a fractured specimen or component. This includes the examination of fracture-exposed surfaces and the interpretation of the fracture markings, and the examination and interpretation of crack patterns. This article deals primarily...
Abstract
Fractography is the means and methods for characterizing a fractured specimen or component. This includes the examination of fracture-exposed surfaces and the interpretation of the fracture markings, and the examination and interpretation of crack patterns. This article deals primarily with the first of these two parts of fractography. Techniques of fractography are presented, fracture markings are explained using glass and ceramic examples, fracture modes in ceramics are discussed, and examples of fracture origins are given.
Book Chapter
Abbreviations and Symbols—Fractography
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007040
EISBN: 978-1-62708-387-4
... rights reserved www.asminternational.org Abbreviations and Symbols Fractography a crack length; crystal lattice length along the a axis A ampere A area; ratio of the alternating stress amplitude of the mean stress A angstrom ac alternating current AES Auger electron spectroscopy AIME American Institute...
Abstract
This article presents abbreviations and symbols related to fractography.
Book Chapter
Imaging Methods for Fracture Surface Observation and Interpretation
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006945
EISBN: 978-1-62708-387-4
... the list of acronyms in Table 1 ). Typically, fractures were examined optically at low-to-moderate magnifications and, if necessary, further examined in the scanning electron microscope (SEM) or transmission electron microscope (TEM) using replicas, although by 1987 TEM use for fractography had fallen off...
Abstract
This article presents a basic overview of technology-driven advances in the imaging of primarily metallic fracture surfaces. It describes various types of microscopes, including scanning electron, dual-beam, ion source, and transmission electron microscopes, and their capabilities. It also covers other useful hardware, such as computer-aided tomography (CAT) and micro-computer-aided tomography (micro-CAT) instruments. The article introduces some of the fracture image postprocessing methods and software, including image registration or alignment, focus stacking, Z-stacking, focal plane merging, and image stitching.
Image
(a) Brittle fisheyes appear as bright spots in gray ductile matrix. Origina...
Available to PurchasePublished: 30 August 2021
Fig. 14 (a) Brittle fisheyes appear as bright spots in gray ductile matrix. Original magnification: 1.7×. (b) Mixed-mode fracture in as-welded three-point bend-test specimen at room temperature (scanning electron microscope). Optical fractography. Original magnification: 1500×
More
Book Chapter
The Role of Fractography in Metallurgical Failure Analysis
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007038
EISBN: 978-1-62708-387-4
... Toughness and Surface Topography in Ultrahigh Strength Steels , Electron Fractography , STP 436, American Society for Testing and Materials , 1968 , p 17 10.1520/STP32000S 15. Jacoby G. , “ Application of Microfractography to the Study of Crack Propagation under Fatigue Stresses ,” NATO...
Abstract
Many metal failures involve fracture, and fractography is an essential activity in many, if not most, failure analysis (FA) investigations. This article introduces and illustrates the role of fractography in an FA investigation. Basic guidelines are briefly presented for investigating a failure and how fractography helps the FA investigator determine evidence. Examples are given throughout this article on how the examination of fracture surfaces discerns various sources of crack initiation and mechanisms of crack growth. The procedures for analyzing fractures also include several steps and techniques that involve photographic documentation, proper specimen handling, and visual or microscopic examination. The article also briefly describes the use of metallography in fracture analysis along with case studies as illustrative examples of various fracture mechanisms and modes.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... of materials since the 1950s, and scanning electron microscopes (SEMs) have been commercially available since 1965 ( Ref 23 ). Today (2020), the SEM is standard equipment for any laboratory performing failure analysis and fractography. The SEM offers significantly superior resolution and depth of field...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
1