Skip Nav Destination
Close Modal
Search Results for
electron discharge
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 476 Search Results for
electron discharge
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... Abstract The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two...
Abstract
The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two cases of electron discharge at the cathode: thermionic emission and nonthermionic emission, also called cold cathode, or field emission. It schematically illustrates relative heat transfer contributions to workpiece in the GTAW process. The article provides information on the effects of cathode tip shape and shielding gas composition in the GTAW process.
Image
Published: 30 September 2014
Fig. 15 Components of a cold-cathode discharge gage. (a) Movement of electrons in relation to the magnetic field. (b) Typical gage construction showing cathode body and anode flange. PTFE, polytetrafluoroethylene
More
Image
Published: 01 December 1998
Fig. 2 Anodic electrocleaning. Four electrons are discharged by four hydroxyl (OH) − ions at the anode, or workpiece, to liberate one molecule of oxygen (O 2 ).
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001728
EISBN: 978-1-62708-178-8
... collisional processes that may excite or deexcite a given energy level with an efficiency far different from that predicted using LTE. For example, in low-pressure discharges, a small portion of the electron population may have a temperature far higher than the gas temperature in the discharge. These fast...
Abstract
This article discusses the general principles, optical systems, and emission sources of optical emission spectroscopy for elemental analysis. Changes in the energy of the valence or outer shell electrons result in the atomic lines used in emission spectroscopy. Each possible combination of electron configurations produces a spectroscopic term that describes the state of the atom. Atomic emission is analytically useful only to the extent that the emission from one atomic species can be measured and its intensity recorded independent of emission from other sources. Emission sources are often designed to minimize molecular emission. Each of the four types of emission sources; arcs, high-voltage sparks, glow discharges, and flames; has a set of physical characteristics with accompanying analytical assets and liabilities. The article also discusses the applications of each type of emission source.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting. abrasive jet machining...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001113
EISBN: 978-1-62708-162-7
... describes the in-situ film growth techniques for producing atomic oxygen by radio frequency excitation or microwave discharge or with ozone. electron-beam co-evaporation high-critical-temperature materials in-situ film growth laser ablation low-critical-temperature materials sputtering thin-film...
Abstract
This article focuses on different thin-film deposition techniques used to make superconducting films and discusses the properties and advantages of high-critical-temperature and low-critical-temperature materials in a number of applications, including signal processing and analog electronic devices. The article gives a brief introduction on superconducting materials, substrates and buffer layers and discusses the major deposition techniques such as, electron-beam co-evaporation, sputtering from either a composite target or multiple sources and laser ablation. The article also describes the in-situ film growth techniques for producing atomic oxygen by radio frequency excitation or microwave discharge or with ozone.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... Abstract The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001421
EISBN: 978-1-62708-173-3
..., friction welding, transient liquid phase bonding, and capacitor discharge welding. aluminum metal-matrix composites capacitor discharge welding chemical reactions electron-beam welding friction welding gas-metal arc welding gas-tungsten arc welding laser-beam welding material selection...
Abstract
The effective integration of aluminum metal-matrix composites (Al-MMCs) into useful structures and devices often requires an understanding of the weldability of Al-MMCs that includes a thorough knowledge on the effects of various interactions between matrix and reinforcement. This article provides a detailed discussion on weldability and the effect of viscosity, chemical reactions, and solidification on weldability. It discusses different welding processes, namely, gas-tungsten arc welding, gas-metal arc welding, laser-beam welding, electron-beam welding, resistance welding, friction welding, transient liquid phase bonding, and capacitor discharge welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
..., the emission moves to a new location that has a high enough oxide content to sustain the discharge of electrons. The arc root or cathode spot where the emission occurs is highly mobile in ac or DCEP and, as a result, the arc is much less stable than in DCEN. Gas Shielding In all cases, the arc and both...
Abstract
This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal-transfer control.
Image
Published: 01 January 2006
Fig. 4 Process through which metal is machined by spark discharge and oil pressure. (1) When the electrode approaches within several micrometers of the workpiece, a spark is generated at a point of the shortest distance and immediately becomes a fine arc column, or a flow of electrons at high
More
Image
Published: 01 January 1994
Fig. 1 Survey of the most important surface analysis techniques. AES (SAM), Auger electron spectroscopy (scanning Auger microscopy). XPS (ESCA), x-ray photoelectron spectroscopy (electron spectroscopy for chemical analysis). SIMS (SNMS), secondary ion mass spectroscopy (secondary neutral mass
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
... of the electron population usually has a temperature far higher than the gas temperature in the discharge. These fast electrons may produce highly excited atoms or ions in much greater numbers than would be generated under LTE conditions. The excitation efficiency in non-LTE sources often depends on close matches...
Abstract
This article is a detailed account of optical emission spectroscopy (OES) for elemental analysis. It begins with a discussion on the historical background of OES and development trends in OES methods. This is followed by a description of the general principles and optical systems of OES, along with various types of emission sources commonly used for OES. Some of the processes involved in calibration and quantification of OES for direct solids analysis by the ratio method are then described. The article ends with a discussion on the applications of each type of emission sources.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
... for a dc glow discharge. Source: Ref 32 When an ion strikes the cathode, in addition to the generation of heat and the removal of neutral atoms and ions, there is about a 5 to 10% probability of secondary electron emission. These secondary electrons are then accelerated back across the dark space...
Abstract
Sputtering is a nonthermal vaporization process in which the surface atoms are physically ejected from a surface by momentum transfer from an energetic bombarding species of atomic/molecular size. It uses a glow discharge or an ion beam to generate a flux of ions incident on the target surface. This article provides an overview of the advantages and limitations of sputter deposition. It focuses on the most common sputtering techniques, namely, diode sputtering, radio-frequency sputtering, triode sputtering, magnetron sputtering, and unbalanced magnetron sputtering. The article discusses the fundamentals of plasma formation and the interactions on the target surface. A comparison of reactive and nonreactive sputtering is also provided. The article concludes with a discussion on the several methods of process control and the applications of sputtered films.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005793
EISBN: 978-1-62708-165-8
... into a carbonitriding process. Fig. 2 Schematic process procedure Theoretical Background on Glow-Discharge Plasma A plasma is an electrically generated gaseous mixture consisting of positively and negatively charged particles as well as neutral species and electrons. Although gaseous in nature, it has...
Abstract
The plasma carburizing process is basically a low-pressure carburizing process making use of a high-voltage electrical field applied between the load to be treated and the furnace wall producing activated and ionized gas species responsible for carbon transfer to the workpieces. This article begins with an overview of the theoretical background and the range and limitations of glow-discharge plasma. It describes the plasma carburizing process, which is carried out with methane or propane. Plasma carburizing processes of sinter metals and stainless steels, and the influence of current pulse length on carbon input of low-pressure carburizing process are also described. The article presents the basic requirements and process parameters to be considered in plasma carburizing equipment. It also exemplifies a still-working plasma process in industrial measure.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
... processes results in low matrix effects in GD spectroscopies. Three main ionization processes occur in GDMS, including electron ionization related to collisions with high energetic electrons (considered to be the main process responsible for the ionization of the discharge gas atoms); asymmetric charge...
Abstract
This article provides a brief account of glow discharge mass spectrometry (GDMS) for direct determination of trace elements in solid samples and for fast depth profiling in a great variety of innovative materials. It begins by describing the general principles of GDMS. This is followed by a discussion on the various components of a GDMS system as well as commercial GDMS instruments. A description of processes involved in specimen preparation and cleaning in GDMS is then presented. Various problems pertinent to multielemental calibrations in GDMS are discussed along with measures to overcome them. The article further provides information on the processes involved in the analytical setup of parameters in GDMS, covering the steps involved in the analysis of GDMS data. It ends with a section on the application and interpretation of GDMS in the metals industry.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
..., and applications of arc deposition are also discussed. arc deposition cathodic arc sources filtering macroparticles removal THE VACUUM ARC is a form of electrical discharge that is sustained primarily on the electrons and ions that originate from the electrodes used to produce the arc. The value...
Abstract
This article describes the characteristics of continuous cathodic arc sources and filtering process for removing macroparticles from a cathodic arc. It provides information on the types of arc sources and the properties of deposited materials. The advantages, limitations, and applications of arc deposition are also discussed.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005791
EISBN: 978-1-62708-165-8
... the workpiece (the cathode). The positively charged nitrogen ion then acquires an electron from the cathode (workpiece) and emits a photon. This photon emission during the formation of nitrogen ions to their atomic state results in the visible glow discharge ( Fig. 3 ) that is characteristic of plasma...
Abstract
Plasma (ion) nitriding is a method of surface hardening using glow-discharge technology to introduce nascent (elemental) nitrogen to the surface of a metal part for subsequent diffusion into the material. This article describes the procedures and applications of plasma nitriding methods of steel. These methods include direct-current plasma nitriding, pulsed-current plasma nitriding, and active-screen plasma nitriding. The article reviews cold-walled and hot-walled furnaces used for plasma nitriding. It provides information on the importance of controlling three process parameters: atmosphere, pressure, and part temperature. The article includes a discussion on the influence of nitrogen concentration on case structure formation on nitrided steel, and explains the significance of microstructure, hardness, and fatigue strength on nitrided case. It also discusses processing, laboratory studies, and applications of nitrocarburizing of steel.
Image
Published: 30 September 2015
Fig. 20 Scanning electron micrograph of the surface of vacuum-hot-pressed consolidated beryllium after electrical discharge machining, showing morphology of a recast layer
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005158
EISBN: 978-1-62708-186-3
... Abstract The electrical discharge machining (EDM) process is used for machining dies because of its ability to machining difficult geometries or materials with poor machinability. This article provides a discussion on the fundamentals of electrical discharge erosion and the principles of EDM...
Abstract
The electrical discharge machining (EDM) process is used for machining dies because of its ability to machining difficult geometries or materials with poor machinability. This article provides a discussion on the fundamentals of electrical discharge erosion and the principles of EDM and orbital-movement EDM. It discusses various aspects of wire EDM in machining dies and provides an overview of the materials used in EDM electrodes. The article concludes with a discussion on electrochemical machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002155
EISBN: 978-1-62708-188-7
... grinding (ECDG) Electrostream drilling (ES) Capillary drilling (CD) Shaped tube electrolytic machining (STEM) Electrical discharge machining (EDM) Electrical discharge wire cutting (EDWC) Electrical discharge grinding (EDG) Electron beam machining (EBM) Laser beam machining (LBM) Thermal energy method...
1