1-20 of 476 Search Results for

electron discharge

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... Abstract The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two...
Image
Published: 30 September 2014
Fig. 15 Components of a cold-cathode discharge gage. (a) Movement of electrons in relation to the magnetic field. (b) Typical gage construction showing cathode body and anode flange. PTFE, polytetrafluoroethylene More
Image
Published: 01 December 1998
Fig. 2 Anodic electrocleaning. Four electrons are discharged by four hydroxyl (OH) − ions at the anode, or workpiece, to liberate one molecule of oxygen (O 2 ). More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001728
EISBN: 978-1-62708-178-8
... collisional processes that may excite or deexcite a given energy level with an efficiency far different from that predicted using LTE. For example, in low-pressure discharges, a small portion of the electron population may have a temperature far higher than the gas temperature in the discharge. These fast...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting. abrasive jet machining...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001113
EISBN: 978-1-62708-162-7
... describes the in-situ film growth techniques for producing atomic oxygen by radio frequency excitation or microwave discharge or with ozone. electron-beam co-evaporation high-critical-temperature materials in-situ film growth laser ablation low-critical-temperature materials sputtering thin-film...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... Abstract The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001421
EISBN: 978-1-62708-173-3
..., friction welding, transient liquid phase bonding, and capacitor discharge welding. aluminum metal-matrix composites capacitor discharge welding chemical reactions electron-beam welding friction welding gas-metal arc welding gas-tungsten arc welding laser-beam welding material selection...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
..., the emission moves to a new location that has a high enough oxide content to sustain the discharge of electrons. The arc root or cathode spot where the emission occurs is highly mobile in ac or DCEP and, as a result, the arc is much less stable than in DCEN. Gas Shielding In all cases, the arc and both...
Image
Published: 01 January 2006
Fig. 4 Process through which metal is machined by spark discharge and oil pressure. (1) When the electrode approaches within several micrometers of the workpiece, a spark is generated at a point of the shortest distance and immediately becomes a fine arc column, or a flow of electrons at high More
Image
Published: 01 January 1994
Fig. 1 Survey of the most important surface analysis techniques. AES (SAM), Auger electron spectroscopy (scanning Auger microscopy). XPS (ESCA), x-ray photoelectron spectroscopy (electron spectroscopy for chemical analysis). SIMS (SNMS), secondary ion mass spectroscopy (secondary neutral mass More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
... of the electron population usually has a temperature far higher than the gas temperature in the discharge. These fast electrons may produce highly excited atoms or ions in much greater numbers than would be generated under LTE conditions. The excitation efficiency in non-LTE sources often depends on close matches...
Book Chapter

By S.L. Rohde
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
... for a dc glow discharge. Source: Ref 32 When an ion strikes the cathode, in addition to the generation of heat and the removal of neutral atoms and ions, there is about a 5 to 10% probability of secondary electron emission. These secondary electrons are then accelerated back across the dark space...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005793
EISBN: 978-1-62708-165-8
... into a carbonitriding process. Fig. 2 Schematic process procedure Theoretical Background on Glow-Discharge Plasma A plasma is an electrically generated gaseous mixture consisting of positively and negatively charged particles as well as neutral species and electrons. Although gaseous in nature, it has...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006648
EISBN: 978-1-62708-213-6
... processes results in low matrix effects in GD spectroscopies. Three main ionization processes occur in GDMS, including electron ionization related to collisions with high energetic electrons (considered to be the main process responsible for the ionization of the discharge gas atoms); asymmetric charge...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
..., and applications of arc deposition are also discussed. arc deposition cathodic arc sources filtering macroparticles removal THE VACUUM ARC is a form of electrical discharge that is sustained primarily on the electrons and ions that originate from the electrodes used to produce the arc. The value...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005791
EISBN: 978-1-62708-165-8
... the workpiece (the cathode). The positively charged nitrogen ion then acquires an electron from the cathode (workpiece) and emits a photon. This photon emission during the formation of nitrogen ions to their atomic state results in the visible glow discharge ( Fig. 3 ) that is characteristic of plasma...
Image
Published: 30 September 2015
Fig. 20 Scanning electron micrograph of the surface of vacuum-hot-pressed consolidated beryllium after electrical discharge machining, showing morphology of a recast layer More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005158
EISBN: 978-1-62708-186-3
... Abstract The electrical discharge machining (EDM) process is used for machining dies because of its ability to machining difficult geometries or materials with poor machinability. This article provides a discussion on the fundamentals of electrical discharge erosion and the principles of EDM...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002155
EISBN: 978-1-62708-188-7
... grinding (ECDG) Electrostream drilling (ES) Capillary drilling (CD) Shaped tube electrolytic machining (STEM) Electrical discharge machining (EDM) Electrical discharge wire cutting (EDWC) Electrical discharge grinding (EDG) Electron beam machining (EBM) Laser beam machining (LBM) Thermal energy method...