1-20 of 169 Search Results for

electron beam welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... Abstract This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005817
EISBN: 978-1-62708-165-8
... and technical configuration of the working chamber: transfer facilities, lock-type shuttle facilities, manufacturing systems, specialized designs Number of generators: single- or multigenerator facility Fig. 18 Universal-chamber electron beam machine for hardening, welding, engraving...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... used in drip melting to make use of reflected electron beams and to reduce evaporation and splattering. The end of a compact is welded to the front of the following one to avoid dropping semisolid material into the pool. Table 2 lists processing parameters that have been successfully used to electron...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... damage at the surface is scanned in a suitably equipped SEM. When the electron beam is left stationary at one location on the specimen surface with a 20° incidence angle between the beam and the surface, the backscattered electrons diffract, giving rise to sets of cones of high and low intensity. To...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
...-generation systems used electron guns based on thermionic emission with beams focused to <1 μm in diameter. Second-generation instruments used lanthanum hexaboride (LaB 6 ) filaments capable of beam sizes to <100 nm. Current state-of-the-art instruments use field-emission sources generating spot sizes...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006677
EISBN: 978-1-62708-213-6
... fundamental level, the virtue of ion beams arises from the unique sample interactions that are distinctly different from electron beam instruments, scanned probes, or optical instruments. In most conventional uses, the FIB is used as a nanoscale “sand blaster” to remove materials from the sample by a...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
... parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003205
EISBN: 978-1-62708-199-3
... Flux-cored arc welding Gas tungsten arc welding Plasma arc welding Electroslag welding Electrogas welding Resistance welding Flash welding Oxyfuel welding Diffusion welding Friction welding Electron beam welding Laser beam welding Torch brazing Furnace brazing Induction brazing...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
.... For long-term applications, creep tests are favored. The measurement of thermal and residual stress has been evaluated using the Moire interferometric method ( Ref 51 ). The microstructure of the weld zone can be examined using light microscopy, scanning electron microscopy, or x-ray techniques...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... with radio-frequency energy by applying power to the chamber electrodes. This strips electrons from the gas molecules, forming free radicals that react with the surface to be treated and create sites for bonding. The glow associated with plasma treatment is a result of stripped electrons falling back...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting. abrasive jet machining...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
... conditions. It then focuses on the characteristics, types, and properties of the five groups of adhesives, such as structural, hot melt, pressure sensitive, water based, ultraviolet, and electron beam cured adhesives. The article also discusses the functions and applications of adhesive modifiers, including...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006473
EISBN: 978-1-62708-190-0
... has been correlated. Most often, DAC will allow for loss in amplitude over material depth (time) to be corrected electronically. Because near-field length and beam spread vary according to transducer size and frequency, and materials vary in attenuation and velocity, a DAC curve must be established...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
...) >2200–4500 (500–1010) Electrode pressure, MPa (ksi) ( Electrode force Tip area ) <30–60 (4–9) >120–240 (17–35) Welding current, kA <2–5 >5–10 Electrode cooling No Yes Typical application Medical device and electronic components Automotive body...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... range, following excitation of atomic electron energy levels by an external energy source, such as an electron beam, a charged particle beam, or an x-ray beam. In most sample matrices, laboratory x-ray spectrometry can detect elements at concentrations of less than 1 μg/g of sample (1 ppm); in a thin...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
..., nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... well as sprayed and sol-gel coatings and laser and electron-beam treatments. anodizing buffing chemical conversion coatings chemical vapor deposition cleaning diffusion treatment electron beam treatment finishing grease removal ion implantation laser treatment oxidation resistance...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... kinetic energy to the atomic structure of the target material in the form of heat. The electron beam, when sharply focused for welding, is capable of impingement power densities on the order of 10 MW/cm 2 (65 MW/in. 2 ). Because this powerful concentration of energy is easily controllable in power...