1-20 of 385 Search Results for

electron beam surface modification

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005817
EISBN: 978-1-62708-165-8
...-deflection, continuous EB interaction, EB flash, as well as multifield EB-deflection and multiprocess techniques. It characterizes the technical and technological possibilities for EBH in comparison to other surface-layer hardening processes. The article also discusses the technical design of electron beam...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
..., nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... behavior. Europium, which is one of the less soluble elements in titanium, was shown to produce significant inhibition to oxidation at 600 °C, where the presence of ternary oxides was a prerequisite for a strong inhibitive effect. Laser and Electron Beam Treatment Energy beam surface treatment...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
...Abstract Abstract Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
...-tension-driven forces (Marangoni flow), and the reaction force from rapid evaporation (Newton's second law). Clearly, shielding-gas-driven viscous aerodynamic surface drag does not apply in the vacuum of an electron beam chamber, and because laser shielding gas flow is not driven by an arc plasma jet...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001334
EISBN: 978-1-62708-173-3
... doped with sulfur and selenium. Source: Ref 7 The surface-tension-driven fluid flow model should be applicable to non-arc processes, provided the energy input distribution is similar to a GTA arc. This condition is satisfied for conduction-mode electron beam and laser welds. Dramatic increases...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... of these techniques for chemical characterization of surfaces. Surface analysis technique summary chart Table 1 Surface analysis technique summary chart Surface analysis technique Parameter AES XPS TOF-SIMS Probe beam Electrons X-ray photons Ions Analyzed beam Electrons...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating. computer-aided design dynamic beam deflection electron beam electron beam direct manufacturing system high-frequency multibeam process multiple-pool...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001465
EISBN: 978-1-62708-173-3
... The impingement of electrons onto a metal surface causes the emission of x-rays. The former Soviet Union experimented with a manual electron-beam welding gun for space application. However, x-ray shielding capacity is proportional to the mass of the shield; therefore, shielding of workers may be difficult due...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005610
EISBN: 978-1-62708-174-0
... in Welding, Cutting, and Surface Treatment: State-of-the-Art 1991 ( Englewood, NJ ), Bakish Materials Corporation , p 125 – 140 13. Nello O. , Electron Beam Probing Systems—A Review , TWI Bull. , May/June 2001 , p 38 – 40 14. Palmer T.A. and Elmer J.W...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003240
EISBN: 978-1-62708-199-3
... that its beam passes through the test object. As the object beam passes through the test object, it is modified by the object. The modification is generally in both amplitude and phase. The object beam then passes through an acoustic lens, which focuses the image of the test object at the liquid surface...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... that magnifies and images sample surfaces through controlled rastering of a highly focused electron beam across the area of interest. A variety of signals are produced, particularly backscattered and secondary electrons, as the electron beam interacts with the sample surface; these signals provide local...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001292
EISBN: 978-1-62708-170-2
... J.K. , Ed., Ion Implantation , Academic Press , 1980 2. Hirvonen J.K. , Surface Alloying by Ion, Electron, and Laser Beams , Rehn L. , Picraux S.T. , and Wiedersich H. , Ed., ASM International , 1987 , p 373 – 388 3. Venkatesan T. , Proceedings...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
.... Scanning Auger microscopy is accomplished by scanning an electron beam across the surface of a sample while measuring resultant electron signals. This scanning process generates secondary electron microscopy (SEM) images, backscattered electron images, and Auger maps. Secondary electron microscopy images...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005579
EISBN: 978-1-62708-174-0
... to surface-tension-driven fluid flow.) Measurements of the electron beam power-density distribution verified that there were no anomalous changes in the beam, such as a beam width maximum, with increasing peak power density. The d / w ratio maximum away from sharp focus is therefore proposed to originate...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... at this wavelength. One such material is colloidal graphite. Electron Beam Hardening Electron beam hardening, while not as widespread as laser hardening, also is a solid-state transformational hardening process that uses direct impingement of a highly focused electron beam to provide surface heating...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006677
EISBN: 978-1-62708-213-6
... modification, or a variety of other tasks, which are discussed later. However, the more common configuration today (2019) is the FIB-SEM (also known as dual beam or cross beam). These instruments are a combination of an FIB and an SEM in which the ion beam and the electron beam are nominally coincident...
Book Chapter

By Donald M. Mattox
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... with the depositing material to form a compound film material. In some cases, such as when using low-voltage, high-current electron-beam evaporation or arc vaporization, an appreciable portion of the vaporized source material can be ionized to allow bombardment by “film ions.” Often the term ion plating...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006683
EISBN: 978-1-62708-213-6
... modify the chemical and electronic state of the surface monolayer. In the case of inert primary beam bombardment, for example, Ar + on aluminum versus aluminum oxide, the positive metal ion yield is 3 to 4 orders of magnitude higher in metal oxides than in their pure metal counterparts. The ion...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001770
EISBN: 978-1-62708-178-8
... currents from 0.05 to 5 μA and the ability to focus and deflect electrons electrically are among the chief advantages of using electron beams for primary excitation. In this respect, secondary electron images are often used to locate precise positions of interest on a sample surface and to complement Auger...