Skip Nav Destination
Close Modal
Search Results for
electromagnetic impulse method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 30 Search Results for
electromagnetic impulse method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 14 Hybrid methods for use with soft tools. (a) Use of an electrohydraulic impulse in conjunction with sheet hydroforming. Hydroform forms the basic shape, while the shock wave imparts detail. (b) Use of electromagnetic coils to influence the strain distribution in electromagnetic
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
..., such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology. electrohydraulic forming electromagnetic...
Abstract
This article emphasizes the traits that are common to high-velocity forming operations. It describes general principles on how metal forming is accomplished and analyzed when inertial forces are large. The article discusses the principal methods of high-velocity forming, such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005595
EISBN: 978-1-62708-174-0
... of the geometry, it is possible to estimate by both analytical and numerical methods the system inductance and EM pressure acting on the workpiece ( Ref 5 , 40 ). Fig. 7 Cross section of tubes with coil and core for magnetic impulse welding Welding of sheet metal is substantially more difficult...
Abstract
This article describes the fundamental theory of magnetic pulse welding (MPW). It reviews the equipment used for MPW, namely, work coil, capacitor bank, high-voltage power supply, high-voltage switches, and field shapers. The article discusses the MPW process and explains the critical parameters needed to obtain acceptable welds. Applications and safety guidelines of the MPW are also presented.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005100
EISBN: 978-1-62708-186-3
.... Including techniques such as explosive, electromagnetic, and electrohydraulic forming, these methods have been used for some time, primarily for very specialized applications with small lot sizes. Although the main features of modern HVMF equipment were well established in the 1960s and 1970s, the increased...
Abstract
Sheet forming comprises deformation processes in which a metal blank is shaped by tools or dies, primarily under the action of tensile stresses. This article discusses the classification of sheet-forming processes for obtaining desired dimensional features. It describes different process-related developments, namely, superplastic forming of aluminum, forming of tailor-welded blanks, rubber-pad forming, and high-velocity metal forming. The article explains cost-effective approaches of evaluating tooling designs prior to the manufacture of expensive steel dies and dieless forming techniques such as thermal forming and peen forming. It provides information on the application of advanced high-strength steels, magnesium alloys, and various ultrafine-grain materials for superplastic sheet forming. The article concludes with information on the development and application of simulation, design, and control of sheet-forming processes.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003303
EISBN: 978-1-62708-176-4
... the structure/property effects of planar shock waves on ductile materials (metals and alloys) due to the wave propagation through the material. The techniques include explosive-driven shock-loading methods, shock-loading methods using exploding foil and laser-driven impactors, gas/powder launcher-driven shock...
Abstract
The study of the physical properties of ductile solids subjected to shock wave loading is undertaken to understand how the thermodynamic conditions and strain rate affect material response. This article presents a description of a range of possible experimental techniques to quantify the structure/property effects of planar shock waves on ductile materials (metals and alloys) due to the wave propagation through the material. The techniques include explosive-driven shock-loading methods, shock-loading methods using exploding foil and laser-driven impactors, gas/powder launcher-driven shock loading methods, and radiation-driven shock-loading methods. Design parameters for shock recovery fixtures, spallation fixtures, and the flyer-plate experiment, are also discussed.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006447
EISBN: 978-1-62708-190-0
... of the electromagnetic spectrum having wavelengths from 100 to 400 nm—just beyond the violet end of the visible spectrum—and is not visible to the human eye. Chemicals, dyes, and so on used in dye penetrant testing and magnetic-particle inspection methods have the ability to enter surface discontinuities; black...
Abstract
Visual inspection (VI) is the oldest inspection technique man has used as a quality-control tool to evaluate products, assess their final form in terms of fabrication accuracy and external features based on experience, and decide on their acceptance or rejection. This article discusses the basic principles of visual inspection in terms of direct visual examination and indirect visual examination as well as advantages and limitations of visual inspection. It reviews the factors affecting the effectiveness of VI as a nondestructive testing (NDT): lighting conditions of observation, condition of surface under inspection, physical state/condition of inspector, proper training of personnel and level of expertise, and knowledge of applicable standards. The article provides schematic illustrations of rigid borescopes, fiberscopes, and videoscopes. It concludes with a discussion on automated optical inspection systems.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
... the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace. computational fluid dynamics discretization finite volume method fluid viscosity induction crucible furnaces induction melting...
Abstract
This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
...-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM). arc welding constant-current power sources...
Abstract
Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM).
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003321
EISBN: 978-1-62708-176-4
... Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation These two standards are almost verbatim versions of C 1198 and C 1259, which are generic and need not be confined to advanced ceramics, but are applicable to all elastic materials. In resonant...
Abstract
This article describes the tests for the common types of fabricated components and modeling of metal deformation. It provides an overview of component testing and briefly reviews the relationship of mechanical properties in the process of mechanical design for static loads, cyclic loads, dynamic loads, and high-temperature materials. The article describes the general properties related to monotonic stress-strain behavior of steels. It also discusses materials properties and operating stresses as well as other factors, such as part shape and environmental effects, which play significant roles in the design process of components.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
... can be found in Ref 69 , 70 , 71 , and 52 , 53 , 54 , 55 , 56 , 57 , 58 . The velocity of the inner wall of the tube is measured by an electromagnetic gage placed in the center of a cavity collapsing in external magnetic field ( Ref 54 , 55 ). The collapse also can be driven by impulse...
Abstract
This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick-walled cylinder testing, and pressure-shear plate impact testing.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
.... Tubular products are inspected using a variety of nondestructive methods during production and during their service to ensure quality. Nondestructive testing (NDT) methods include most of the methods discussed in this Volume, namely electromagnetic inspection techniques (i.e., magnetic flux-leakage, Hall...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006454
EISBN: 978-1-62708-190-0
... Abstract Acoustic emission is the generation of stress waves by sudden movement in stressed materials. This article begins with a comparison of acoustic emission from most other nondestructive testing (NDT) methods, and discusses the range of applicability of acoustic emission. It describes...
Abstract
Acoustic emission is the generation of stress waves by sudden movement in stressed materials. This article begins with a comparison of acoustic emission from most other nondestructive testing (NDT) methods, and discusses the range of applicability of acoustic emission. It describes the instrumentation principles of acoustic emission and reviews the role of acoustic emission in materials studies. The article illustrates the testing of metal-matrix composites (MMCs) using acoustic emission and the use of acoustic emission inspection in production quality control. It concludes with information on the structural test applications of acoustic emission inspection to find defects and to assess or ensure structural integrity.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
... Abstract This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression...
Abstract
This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression, and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
... with the developer mix is another method of controlling electrical discharge. These additives usually are incorporated in small amounts, from 0.25 to 2.0 wt%. They improve powder flow, modify triboelectric charge generation, increase carrier life, and improve photoreceptor performance. Furthermore, the proper...
Abstract
Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas. This article reviews some of the diverse and emerging applications of ferrous and nonferrous powders. It also discusses the functions of copier powders and the processes used frequently for copier powder coating.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... of emitting electromagnetic by an arc that heats the slag. The arc is then radiation in the wavelength range of 0.180 more parallel or nearly parallel members. extinguished by the conductive slag, which mm to 1 mm, by radiative recombination in edge weld A weld in an edge joint. is kept molten by its...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005261
EISBN: 978-1-62708-187-0
... a narrow-diameter fill (stalk) tube from a furnace usually residing below the casting machine (although there is a version using electromagnetic forces to lift metal into the mold, and then the furnace may be an open hearth located beside the casting machine). The process can be considered for low to high...
Abstract
This article provides an overview of conventional low-pressure casting and describes types of furnaces, tooling, and cores. It discusses the casting cycle steps, advantages, mechanical properties, and considerations of counterpressure casting. The article describes the vacuum riserless/pressure riserless casting process for casting aluminum.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... is that they generate impulsive contact pressures on the solid target far higher than those produced by steady flows (see the section “Liquid/Solid Interactions—Impact Pressures” in this article). At sufficiently high impact velocities, solid material can be removed even by a single droplet (or other small liquid...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... or breakage. Covalent bonds can be broken or cleaved by chemicals or external energy such as infrared, ultraviolet (UV), x-ray, gamma, or electron beam radiation ( Fig. 5 ). Fig. 5 Electromagnetic spectrum. Courtesy of Nasky/Shutterstock. Royalty-free stock vector ID: 1255179580 Exposure to any...
Abstract
Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all of these parameters are comprehensively examined during the design process. This article focuses on all of these factors, except processing-related failures, which are outside the design and engineering domain. It is dedicated to the identification and avoidance of common problems associated with the selection and designing of plastic parts. The article provides information on the material-related design criteria that depend on the applications, environmental conditions of use, and performance requirements. It discusses physical properties of plastics based on their relevance to real-world environmental conditions. The most-common design problems related to design considerations are also covered.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
1